Bài 4.15 trang 73 Toán 7 Tập 1 - Kết nối tri thức

Bài 4.15 trang 73 Toán 7 Tập 1: Cho đoạn thẳng AB song song và bằng đoạn thẳng CD như Hình 4.42. Gọi E là giao điểm của hai đường thẳng AD và BC. Hai điểm G và H lần lượt nằm trên AB và CD sao cho G, E, H thẳng hàng. Chứng minh rằng:

Bài 4.15 trang 73 Toán 7 Tập 1 | Kết nối tri thức Giải Toán 7

a) ΔABE=ΔDCE;

b) EG = EH.

Lời giải:

a) Do AB // CD nên ABE^=DCE^ (2 góc so le trong) và BAE^=CDE^ (2 góc so le trong).

Xét hai tam giác ABE và DCE có:

ABE^=DCE^ (chứng minh trên).

AB = CD (theo giả thiết).

BAE^=CDE^ (chứng minh trên).

Vậy ΔABE=ΔDCE (g – c – g).

b) Do ΔABE=ΔDCE nên BE = CE (2 cạnh tương ứng).

Do G, E, H thẳng hàng GEB^=HEC^ (2 góc đối đỉnh).

Do ABE^=DCE^ nên GBE^=HCE^.

Xét hai tam giác GEB và HEC có:

GEB^=HEC^ (chứng minh trên).

BE = CE (chứng minh trên).

GBE^=HCE^ (chứng minh trên).

Do đó ΔGEB=ΔHEC (g – c – g).

Vậy EG = EH (2 cạnh tương ứng).

Lời giải bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác hay khác:

Các bài học để học tốt Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác:

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Kết nối tri thức khác