Bài 9 trang 120 Toán 7 Tập 2 Cánh diều

Bài 9 trang 120 Toán lớp 7 Tập 2: Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Các điểm A, G, H, I, O phân biệt. Chứng minh rằng:

a) Nếu tam giác ABC cân tại A thì các điểm A, G, H, I, O cùng nằm trên một đường thẳng.

b) Nếu các điểm A, H, I cùng nằm trên một đường thẳng thì tam giác ABC cân tại A.

Lời giải:

a)

Bài 9 trang 120 Toán 7 Tập 2 Cánh diều

Gọi K là trung điểm của BC.

Do G là trọng tâm của tam giác ABC nên A, G, K thẳng hàng (1).

Do K là trung điểm của BC nên BK = CK.

Do tam giác ABC cân tại A nên AB = AC và ABC^=ACB^.

Xét ∆AKB và ∆AKC có:

AK chung.

BK = CK (chứng minh trên).

AB = AC (chứng minh trên).

Do đó ∆AKB = ∆AKC (c - c - c).

Suy ra AKB^=AKC^, mà AKB^+AKC^=180° nên AKB^=AKC^=90°.

Do đó AK ⊥ BC.

H là trực tâm của tam giác ABC nên AH ⊥ BC.

Ta có AK ⊥ BC và AH ⊥ BC nên A, H, K thẳng hàng (2).

O là giao điểm ba đường trung trực của tam giác ABC nên OA = OB = OC.

Xét ∆OKB và ∆OKC có:

OK chung.

OB = OC (chứng minh trên).

BK = CK (chứng minh trên).

Do đó ∆OKB = ∆OKC (c - c - c).

Suy ra OKB^=OKC^, mà OKB^+OKC^=180° nên OKB^=OKC^=90°.

Do đó OK ⊥ BC.

Lại có AK ⊥ BC nên A, O, K thẳng hàng (3).

Do BI là tia phân giác của ABC^ nên IBK^=12ABC^.

Do CI là tia phân giác của ACB^ nên ICK^=12ACB^.

ABC^=ACB^ nên IBK^=ICK^.

Tam giác IBC có IBC^=ICB^ nên tam giác IBC cân tại I.

Do đó IB = IC.

Xét ∆IBK và ∆ICK có:

IB = IC (chứng minh trên).

IBK^=ICK^ (chứng minh trên).

BK = CK (chứng minh trên).

Do đó ∆IBK = ∆ICK (c - g - c).

Suy ra IKB^=IKC^, mà IKB^+IKC^=180° nên IKB^=IKC^=90°.

Do đó IK ⊥ BC.

Lại có AK ⊥ BC nên A, I, K thẳng hàng (4).

Từ (1), (2), (3) và (4) ta có A, G, H, I, O thẳng hàng khi tam giác ABC cân tại A.

b)

Bài 9 trang 120 Toán 7 Tập 2 Cánh diều

Gọi K là chân đường cao kẻ từ H vuông BC.

H là trực tâm của tam giác ABC nên A, H, K thẳng hàng.

Mà A, H, I thẳng hàng nên A, H, I, K thẳng hàng.

Mà AI là tia phân giác của BAC^ nên AK là đường phân giác của BAC^.

Do đó KAB^=KAC^.

Xét ∆AKB vuông tại K và ∆AKC vuông tại K có:

KAB^=KAC^ (chứng minh trên).

AK chung.

Do đó ∆AKB = ∆AKC (góc nhọn - cạnh góc vuông).

Suy ra AB = AC (2 cạnh tương ứng).

Tam giác ABC có AB = AC nên tam giác ABC cân tại A.

Lời giải bài tập Toán 7 Bài tập cuối chương 7 trang 119, 120 hay, chi tiết khác:

Các bài học để học tốt Toán 7 Bài tập cuối chương 7:

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Cánh diều khác