Bài 3 trang 107 Toán 7 Tập 2 Cánh diều

Bài 3 trang 107 Toán lớp 7 Tập 2: Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Trên tia đối của tia MA lấy điểm D sao cho MD = MG. Chứng minh:

a) GA = GD;

b) ∆MBG = ∆MCD;

c) CD = 2GN.

Lời giải:

Bài 3 trang 107 Toán 7 Tập 2 Cánh diều

a) Tam giác ABC có hai đường trung tuyến AM, BN cắt nhau tại G nên G là trọng tâm của tam giác ABC.

Khi đó GM = 12GA.

Trên tia đối của tia MA lấy điểm D sao cho MD = MG nên M là trung điểm của GD.

Suy ra GM = 12GD.

Vậy GA = GD.

b) Do M là trung điểm của GD nên MG = MD.

Xét ∆MBG và ∆MCD có:

MB = MC (theo giả thiết).

GMB^=DMC^ (2 góc đối đỉnh).

MG = MD (chứng minh trên).

Do đó ∆MBG = ∆MCD (c - g - c).

c) Do ∆MBG = ∆MCD (c - g - c) nên CD = BG (2 cạnh tương ứng).

Do G là trọng tâm của tam giác ABC nên BG = 2GN.

Mà CD = BG nên CD = 2GN.

Lời giải bài tập Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác hay, chi tiết khác:

Các bài học để học tốt Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác:

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Cánh diều khác