Tóm tắt lý thuyết Toán lớp 6 Chương 2: Số nguyên | Lý thuyết Toán lớp 6 chi tiết Cánh diều
Với tóm tắt lý thuyết Toán lớp 6 Chương 2: Số nguyên - Cánh diều hay nhất, chi tiết sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 6.
Lý thuyết Toán 6 Bài 4: Phép trừ số nguyên. Quy tắc dấu ngoặc
Lý thuyết Toán 6 Bài 6: Phép chia hết hai số nguyên. Quan hệ chia hết trong tập hợp số nguyên
Lý thuyết Toán 6 Bài 1: Số nguyên âm
A. Lý thuyết
+ Các số – 1, – 2, – 3, ... là các số nguyên âm. Số nguyên âm được nhận biết bằng dấu “–” ở trước số tự nhiên khác 0.
Ví dụ: – 5, – 10, – 10 000, ….
+ Cách đọc số nguyên âm: Có hai cách đọc số nguyên âm
Ví dụ: – 7 là số nguyên âm, đọc là âm bảy hoặc trừ bảy.
+ Số nguyên âm được sử dụng trong nhiều tình huống thực tiễn cuộc sống.
Chẳng hạn,
- Số nguyên âm được dùng để chỉ nhiệt độ dưới 0 °C
Ví dụ: Nhiệt độ 5 độ dưới 0 °C được viết là – 5 °C. đọc là: âm năm độ C.
- Số nguyên âm được dùng để chỉ độ cao dưới mực nước biển.
Ví dụ: Một thị trấn nhỏ gần thành phố Rốt-téc-đam (Rotterdam, Hà Lan) là một vùng đất trũng dưới mực nước biển xấp xỉ 7 m. Ta nói độ cao trung bình của vùng đất đó là – 7 m.
- Số nguyên âm được đùng để chỉ số tiền nợ, cũng như để chỉ số tiền lỗ trong kinh doanh.
Ví dụ: Khi ông Huy nợ 50 000 đồng thì ta có thể nói ông Huy có – 50 000 đồng.
Khi báo cáo kết quả kinh doanh, nếu bị lỗ 40 000 000 đồng thì ta có thể nói lợi nhuận là – 40 000 000 đồng.
- Số nguyên âm được dùng để chỉ thời gian trước Công nguyên.
Ví dụ: Nhà toán học Py-ta-go (Pythagoras) sinh năm – 570, nghĩa là ông sinh năm 570 trước Công nguyên.
B. Bài tập tự luyện
Bài 1.
a) Đọc các số sau: – 9, – 17.
b) Viết các số sau: trừ hai mươi lăm; âm ba trăm bốn mươi tám.
Lời giải:
a) Số – 9 được đọc là: "âm chín" hoặc là "trừ chín";
Số – 17 được đọc là: "âm mười bảy" hoặc "trừ mười bảy".
b) Số "trừ hai mươi lăm" được viết là: – 25;
Số "âm ba trăm bốn mươi tám" được viết là: – 348.
Lý thuyết Toán 6 Bài 2: Tập hợp các số nguyên
A. Lý thuyết
I. Tập hợp các số nguyên
+ Số tự nhiên khác 0 còn được gọi là số nguyên dương.
+ Các số nguyên âm, số 0 và các số nguyên dương tạo thành tập hợp các số nguyên.
+ Tập hợp các số nguyên được kí hiệu là .
Ví dụ:
+ Các số nguyên dương: 4, 6, 10 000, …
+ Tập hợp các số nguyên = {…, – 2, – 1, 0, 1, 2, …}
Chú ý:
+ Số 0 không phải số nguyên âm, cũng không phải số nguyên dương.
+ Các số nguyên dương 1, 2, 3,... đều mang dấu “+" nên còn được viết là + 1, + 2, + 3,...
II. Biểu diễn số nguyên trên trục số
Ta có thể biểu diễn số nguyên trên trục số. Có hai loại trục số:
1. Trục số nằm ngang
Trên trục số nằm ngang, điểm biểu diễn số nguyên âm nằm bên trái điểm 0, điểm biểu diễn số nguyên dương nằm bên phải điểm 0.
2. Trục số thẳng đứng
Trên trục số thẳng đứng, điểm biểu diễn số nguyên âm nằm phía dưới điểm 0, điểm biểu diễn số nguyên dương nằm phía trên điểm 0.
Chú ý: Khi nói “trục số” mà không nói gì thêm, ta hiểu là nói về trục số nằm ngang.
III. Số đối của một số nguyên
+ Trên trục số, hai số nguyên (phân biệt) có điểm biểu diễn nằm về hai phía của gốc 0 và cách đều gốc 0 được gọi là hai số đối nhau.
+ Số đối của 0 là 0.
Ví dụ:
– 4 và 4 là hai số đối nhau.
– 4 là số đối của 4 và 4 là số đối của – 4.
IV. So sánh các số nguyên
1. So sánh hai số nguyên
+ Trên trục số nằm ngang, nếu điểm a nằm bên trái điểm b thì số nguyên a nhỏ hơn số nguyên b.
+ Trên trục số thẳng đứng, nếu điểm a nằm phía dưới điểm b thì số nguyên a nhỏ hơn số nguyên b.
+ Nếu a nhỏ hơn b thì ta viết là a < b hoặc b > a.
Ví dụ:
Điểm – 10 nằm bến trái điểm – 5 nên – 10 < – 5
Điểm 2 nằm bên phải điểm 0 nên 2 > 0.
Chú ý:
+ Số nguyên dương luôn lớn hơn 0. Số nguyên âm luôn nhỏ hơn 0.
+ Nếu a < b và b < c thì a < c
Ví dụ: – 2 < 0 và 0 < 5 thì – 2 < 5.
2. Cách so sánh hai số nguyên
2.1 So sánh hai số nguyên khác dấu
Số nguyên âm luôn nhỏ hơn số nguyên dương.
Ví dụ: – 7 là số nguyên âm và 5 là số nguyên dương nên – 7 < 5.
2.2 So sánh hai số nguyên cùng dấu
+ So sánh hai số nguyên dương: Đã biết ở chương I.
+ So sánh hai số nguyên âm:
Để so sánh hai số nguyên âm, ta làm như sau:
Bước 1. Bỏ dấu “–” trước cả hai số âm
Bước 2. Trong hai số nguyên dương nhận được, số nào nhỏ hơn thì số nguyên âm ban đầu (trước khi bỏ dấu “–”) sẽ lớn hơn.
Ví dụ: So sánh – 216 và – 309.
Bỏ dấu “–” trước các số – 216 và – 309, ta được các số lần lượt là 216 và 309.
Do 216 < 309 nên – 216 > – 309.
B. Bài tập tự luyện
....................................
....................................
....................................
Xem thêm tóm tắt lý thuyết Toán lớp 6 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 6 hay khác:
- Giải sgk Toán 6 Cánh diều
- Giải SBT Toán 6 Cánh diều
- Giải lớp 6 Cánh diều (các môn học)
- Giải lớp 6 Kết nối tri thức (các môn học)
- Giải lớp 6 Chân trời sáng tạo (các môn học)
- Soạn Văn 6 Cánh diều (hay nhất)
- Soạn Văn 6 Cánh diều (ngắn nhất)
- Giải sgk Toán 6 - Cánh diều
- Giải sgk Tiếng Anh 6 Global Success
- Giải sgk Tiếng Anh 6 Friends plus
- Giải sgk Tiếng Anh 6 Smart World
- Giải sgk Tiếng Anh 6 Explore English
- Giải sgk Khoa học tự nhiên 6 - Cánh diều
- Giải sgk Lịch Sử 6 - Cánh diều
- Giải sgk Địa Lí 6 - Cánh diều
- Giải sgk Giáo dục công dân 6 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 6 - Cánh diều
- Giải sgk Tin học 6 - Cánh diều
- Giải sgk Công nghệ 6 - Cánh diều
- Giải sgk Âm nhạc 6 - Cánh diều