Giải Toán 12 trang 70 Tập 2 Kết nối tri thức
Với Giải Toán 12 trang 70 Tập 2 trong Bài 18: Xác suất có điều kiện Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 70.
Bài 6.1 trang 70 Toán 12 Tập 2: Một hộp kín đựng 20 tấm thẻ giống hệt nhau đánh số từ 1 đến 20. Một người rút ngẫu nhiên ra một tấm thẻ từ trong hộp. Người đó được thông báo rằng thẻ rút ra mang số chẵn. Tính xác suất để người đó rút được thẻ số 10.
Lời giải:
Gọi A là biến cố: “Người đó rút được thẻ số 10”;
B là biến cố: “Người đó rút được thẻ mang số chẵn”.
Ta có AB = {10}; B = {2; 4; 6; 8; 10; 12; 14; 16; 18; 20}.
Do đó, ; .
Vậy
Bài 6.2 trang 70 Toán 12 Tập 2: Cho P(A) = 0,2; P(B) = 0,51; P(B | A) = 0,8. Tính P(A | B).
Lời giải:
Áp dụng công thức nhân xác suất, ta có: P(AB) = P(A) ∙ P(B | A) = 0,2 ∙ 0,8 = 0,16.
Khi đó, ta có:
Bài 6.3 trang 70 Toán 12 Tập 2: Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để:
a) Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 nếu biết rằng ít nhất có một con xúc xắc xuất hiện mặt 5 chấm;
b) Có ít nhất có một con xúc xắc xuất hiện mặt 5 chấm nếu biết rằng tổng số chấm xuất hiện trên hai con xúc xắc bằng 7.
Lời giải:
Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”;
B là biến cố: “Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm”.
a) Cần tính P(A | B).
Ta có n(Ω) = 36; AB = {(2; 5); (5; 2)} ⇒ n(AB) = 2
= {(a; b) | a, b ∈ {1; 2; 3; 4; 6}} ⇒ n() = 5 ∙ 5 = 25.
Từ đó suy ra .
b) Ta cần tính P(B | A).
Ta có . Ở câu a) ta đã có Cần tính P(A).
Ta có A = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)}; n(A) = 6 .
Từ đó suy ra
Bài 6.4 trang 70 Toán 12 Tập 2: Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc đó không nhỏ hơn 10 nếu biết rằng có ít nhất một con xúc xắc xuất hiện mặt 5 chấm.
Lời giải:
Gọi A là biến cố: “tổng số chấm xuất hiện trên hai con xúc xắc đó không nhỏ hơn 10”;
B là biến cố: “ít nhất một con xúc xắc xuất hiện mặt 5 chấm”.
Cần tính
Ta có AB = {(5; 5); (5; 6); (6; 5)}; n(AB) = 3
= {(a; b) | a, b ∈ {1; 2; 3; 4; 6}} ⇒ n() = 5 ∙ 5 = 25.
.
Vậy
Bài 6.5 trang 70 Toán 12 Tập 2: Bạn An phải thực hiện hai thí nghiệm liên tiếp. Thí nghiệm thứ nhất có xác suất thành công là 0,7. Nếu thí nghiệm thứ nhất thành công thì xác suất thành công của thí nghiệm thứ hai là 0,9. Nếu thí nghiệm thứ nhất không thành công thì xác suất thành công của thí nghiệm thứ hai chỉ là 0,4. Tính xác suất để:
a) Cả hai thí nghiệm đều thành công;
b) Cả hai thí nghiệm đều không thành công;
c) Thí nghiệm thứ nhất thành công và thí nghiệm thứ hai không thành công.
Lời giải:
a) Gọi A là biến cố: “Thí nghiệm thứ nhất thành công” và B là biến cố: “Thí nghiệm thứ hai thành công”. Khi đó biến cố “Cả hai thí nghiệm đều thành công” là AB.
Theo công thức nhân xác suất ta có P(AB) = P(A) ∙ P(B | A).
Theo bài ra ta có P(A) = 0,7; P(B | A) = 0,9.
Thay vào ta được P(AB) = 0,7 ∙ 0,9 = 0,63.
b) Biến cố: “Cả hai thí nghiệm đều không thành công” là .
Theo công thức nhân xác suất ta có .
Ta có là xác suất để thí nghiệm thứ hai không thành công nếu thí nghiệm thứ nhất không thành công. Do đó, từ dữ kiện của bài toán ta có:
; .
Vậy .
c) Biến cố “Thí nghiệm thứ nhất thành công và thí nghiệm thứ hai không thành công” là .
Theo công thức nhân xác suất ta có .
Ta có là xác suất để thí nghiệm thứ hai không thành công nếu thí nghiệm thứ nhất thành công. Do đó từ dữ kiện của bài toán ta có
.
Vậy
Bài 6.6 trang 70 Toán 12 Tập 2: Trong một túi có một số chiếc kẹo cùng loại, chỉ khác màu, trong đó có 6 cái kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên một cái kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm một cái kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai cái kẹo màu cam là . Hỏi ban đầu trong túi có bao nhiêu cái kẹo?
Lời giải:
Gọi A là biến cố: “Lần 1 Hà lấy được kẹo màu cam”;
B là biến cố: “Lần 2 Hà lấy được kẹo màu cam”.
Khi đó AB là biến cố: “Cả hai lần Hà lấy được kẹo màu cam”. Ta có P(AB) = .
Gọi n là số kẹo ban đầu trong túi (n > 0).
Ta có
Theo công thức nhân xác suất, ta có:
P(AB) = P(A) ∙ P(B | A)
⇒ n2 – n – 90 = 0 ⇔ n = – 9 (loại) hoặc n = 10 (t/m).
Vậy ban đầu trong túi có 10 cái kẹo.
Lời giải bài tập Toán 12 Bài 18: Xác suất có điều kiện hay khác:
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT