Giải Toán 12 trang 68 Tập 2 Kết nối tri thức
Với Giải Toán 12 trang 68 Tập 2 trong Bài 18: Xác suất có điều kiện Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 68.
Luyện tập 3 trang 68 Toán 12 Tập 2: Một công ty dược phẩm muốn so sánh tác dụng điều trị bệnh X của hai loại thuốc M và N. Công ty đã tiến hành thử nghiệm với 4 000 bệnh nhân mắc bệnh X trong đó 2 400 bệnh nhân dùng thuốc M, 1600 bệnh nhân còn lại dùng thuốc N. Kết quả được cho trong bảng dữ liệu thống kê 2 × 2 như sau:
Uống thuốc Kết quả |
M |
N |
Khỏi bệnh |
1 600 |
1 200 |
Không khỏi bệnh |
800 |
400 |
Chọn ngẫu nhiên một bệnh nhân trong số 4 000 bệnh nhân thử nghiệm sau khi uống thuốc. Tính xác suất để bệnh nhân đó
a) uống thuốc M, biết rằng bệnh nhân đó khỏi bệnh;
b) uống thuốc N, biết rằng bệnh nhân đó không khỏi bệnh.
Lời giải:
Không gian mẫu Ω là tập hợp 4 000 bệnh nhân.
a) Gọi A là biến cố: “Bệnh nhân đó uống thuốc M” và B là biến cố: “Bệnh nhân đó khỏi bệnh”.
Ta cần tính P(A | B).
Ta có B là tập hợp con của không gian mẫu gồm các bệnh nhân khỏi bệnh.
Ta có n(B) = 1 600 + 1 200 = 2 800 và
AB là biến cố: “Bệnh nhân đó uống thuốc M và khỏi bệnh”. AB là tập hợp con của không gian mẫu gồm các bệnh nhân uống thuốc M và khỏi bệnh.
Ta có n(AB) = 1 600 và .
Do đó
b) Ta có là biến cố: “Bệnh nhân đó không khỏi bệnh” và là biến cố: “Bệnh nhân đó uống thuốc N”.
Ta cần tính .
Ta có là tập hợp con của không gian mẫu gồm các bệnh nhân không khỏi bệnh. Vậy
là biến cố: “Bệnh nhân đó uống thuốc N và không khỏi bệnh”, là tập hợp con của không gian mẫu gồm các bệnh nhân uống thuốc N và không khỏi bệnh, ta có
Do đó
HĐ2 trang 68 Toán 12 Tập 2: Hình thành công thức nhân xác suất
Chứng minh rằng, với hai biến cố A và B, P(B) > 0, ta có:
P(AB) = P(B) ∙ P(A | B).
Lời giải:
Theo công thức: Với hai biến cố A và B bất kì, với P(B) > 0. Khi đó ta có
Suy ra P(AB) = P(B) ∙ P(A | B).
Lời giải bài tập Toán 12 Bài 18: Xác suất có điều kiện hay khác:
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT