HĐ3 trang 22 Toán 12 Tập 2 - Kết nối tri thức

HĐ3 trang 22 Toán 12 Tập 2: Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox, nằm giữa hai mặt phẳng x = a và x = b (a < b) (H.4.20).

a) Tính thể tích V của hình trụ.

b) Tính diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x (a ≤ x ≤ b). Từ đó tính abSxdx và so sánh với V.

HĐ3 trang 22 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Độ dài chiều cao hình trụ là: h = b – a.

Thể tích của hình trụ là: V = πR2h = πR2(b – a).

b) Diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox là

S(x) = πR2.

Ta có abSxdx=abπR2dx=πR2xab=πR2ba

Vậy V=abSxdx

Lời giải bài tập Toán 12 Bài 13: Ứng dụng hình học của tích phân hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác