Bài 4.19 trang 26 Toán 12 Tập 2 - Kết nối tri thức

Bài 4.19 trang 26 Toán 12 Tập 2: Cho tam giác vuông OAB có cạnh OA = a nằm trên trục Ox và AOB^=α0<απ4. Gọi β là khối tròn xoay sinh ra khi quay miền tam giác OAB xung quanh trục Ox (H.4.31).

a) Tính thể tích V của β theo a và α.

b) Tìm α sao cho thể tích V lớn nhất

Lời giải:

Bài 4.19 trang 26 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

a) Xét tam giác OAB vuông tại A, có AB = OA.tanα = a.tanα.

Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy r = AB = a.tanα và chiều cao h = OA = a.

Do đó V=13πr2h=13πa3tan2α

b) Có V'=13πa3.2tanα.1cos2α

0<απ4 => 0 < tanα ≤ 1 nên V' > 0. Do đó V là hàm số đồng biến trên 0;π4

Do đó max0;π4V=Vπ4=13πa3

Vậy α=π4 thì thể tích khối nón là lớn nhất.

Lời giải bài tập Toán 12 Bài 13: Ứng dụng hình học của tích phân hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác