Thực hành 12 trang 59 Toán 12 Tập 2 Chân trời sáng tạo

Thực hành 12 trang 59 Toán 12 Tập 2: Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D'. Cho biết A(0; 0; 0), B(1; 0; 0), D(0; 5; 0), A'(0; 0; 3). Tính góc giữa:

a) hai đường thẳng AC và BA';

b) hai mặt phẳng (BB'D'D) và (AA'C'C);

c) đường thẳng AC' và mặt phẳng (A'BD).

Lời giải:

Thực hành 12 trang 59 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Chọn hệ trục tọa độ như hình vẽ với O trùng với A.

Ta có A'(0; 0; 3), B(1; 0; 0), A(0; 0; 0), C(1; 5; 0), B'(1; 0; 3), D(0; 5; 0), C'(1; 5; 3)

a) Đường thẳng AC nhận AC=1;5;0 làm vectơ chỉ phương.

Đường thẳng BA' nhận BA'=1;0;3 làm vectơ chỉ phương.

Khi đó cosAC,BA'=1.1+5.0+0.312+52.12+32=1265

Suy ra (AC, BA') ≈ 86,44°.

b) Ta có BB'=0;0;3,BD=1;5;0, AC=1;5;0, AA'=0;0;3.

Ta có BB',BD=15;3;0AC,AA'=15;3;0.

Mặt phẳng (BB'D'D) nhận n=13BB',BD=5;1;0 làm vectơ pháp tuyến.

Mặt phẳng (AA'C'C) nhận n'=13AC,AA'=5;1;0 làm vectơ pháp tuyến.

Khi đó cosBB'D'D,AA'C'C=5.5+1.1+0.052+1.52+1=2426=1213.

Suy ra ((BB'D'D), (AA'C'C)) ≈ 22,62°.

c) Ta có AC'=1;5;3, A'B=1;0;3,A'D=0;5;3, A'B,A'D=15;3;5.

Đường thẳng AC' nhận AC'=1;5;3 làm vectơ chỉ phương.

Mặt phẳng (A'BD) nhận n=A'B,A'D=15;3;5 làm vectơ pháp tuyến.

Ta có sinAC',A'BD=1.15+5.3+3.512+52+32.152+32+52=457185.

Suy ra (AC', (A'BD)) ≈ 28,21°.

Lời giải bài tập Toán 12 Bài 2: Phương trình đường thẳng trong không gian hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Chân trời sáng tạo khác