Giải Toán 12 trang 100 Tập 2 Cánh diều

Với Giải Toán 12 trang 100 Tập 2 trong Bài 2: Công thức xác suất toàn phần. Công thức Bayes Toán 12 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 100.

Luyện tập 2 trang 100 Toán 12 Tập 2: Hãy giải bài toán trong phần mở đầu bằng phương pháp sử dụng sơ đồ hình cây như trong Ví dụ 3.

Lời giải:

Xét hai biến cố sau:

A: “Linh kiện được chọn ra đạt tiêu chuẩn”;

B: “Linh kiện được chọn ra do nhà máy I sản xuất”.

Khi đó, ta có:

P(B) = 0,55; P(B¯ ) = 1 – P(B) = 1 – 0,55 = 0,45; P(A | B) = 0,9; P(A | B¯ ) = 0,87.

Sơ đồ hình cây biểu thị tình huống đã cho là:

Luyện tập 2 trang 100 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Áp dụng công thức xác suất toàn phần, ta có:

P(A) = P(B) ∙ P(A | B) + P( B¯) ∙ P(A | B¯ ) = 0,55 ∙ 0,9 + 0,45 ∙ 0,87 = 0,8865.

Vậy xác suất để linh kiện được lấy ra đạt tiêu chuẩn bằng 0,8865.

Hoạt động 2 trang 100 Toán 12 Tập 2: Xét hai biến cố A, B trong Hoạt động 1.

a) Tính: P(A), P(B), P(A | B) và P(B | A).

b) So sánh: P(B | A) và PBPA|BPA

Lời giải:

a) Ta có: P(A) = nAnΩ = 824=13 ; P(B) = nBnΩ  = 624=14 ;

          P(A | B) = nABnB=26=13 ; P(B | A) = nABnA=28=14 .

b) Ta có: PBPA|BPA=141313=14= P(B | A).

Lời giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần. Công thức Bayes hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác