Bài 2 trang 102 Toán 12 Tập 2 Cánh diều

Bài 2 trang 102 Toán 12 Tập 2: Có hai chiếc hộp, hộp I có 5 viên bi màu trắng và 5 viên bi màu đen, hộp II có 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II.

Sau đó lấy ngẫu nhiên một viên bi từ hộp II.

a) Tính xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng.

b) Giả sử viên bi được lấy ra từ hộp II là viên bi màu trắng. Tính xác suất viên bi màu trắng đó thuộc hộp I.

Lời giải:

a) Xét hai biến cố:

A: “Viên bi được lấy ra từ hộp I bỏ sang hộp II là màu trắng”;

B: “Viên bi được lấy ra từ hộp II là viên bi màu trắng”.

Theo bài ra ta có: P(A) = 510=12 ; P( A¯) = 1 – P(A) = 12 .

P(B | A) = 711 ; PB|A¯=611 .

Áp dụng công thức xác suất toàn phần, ta có:

P(B) = P(A) ∙ P(B | A) + P( A¯) ∙ P(B | A¯ ) = 12711+12611=1322 .

Vậy xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng là 1322 .

b) Nếu viên bi được lấy ra từ hộp II là viên bi màu trắng thì xác suất viên bi màu trắng đó thuộc hộp I là: P(A | B) = PAPB|APB=127111322=713 .

Vậy nếu viên bi được lấy ra từ hộp II là viên bi màu trắng thì xác suất viên bi màu trắng đó thuộc hộp I là 713

Lời giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần. Công thức Bayes hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác