Vận dụng trang 85 Toán 11 Tập 2 - Kết nối tri thức
Vận dụng trang 85 Toán 11 Tập 2: Người ta xây dựng một cây cầu vượt giao thông hình parabol nối hai điểm có khoảng cách là 400 m (H.9.4). Độ dốc của mặt cầu không vượt quá 10o(độ dốc tại một điểm được xác định bởi góc giữa phương tiếp xúc với mặt cầu và phương ngang như Hình 9.5). Tính chiều cao giới hạn từ đỉnh cầu đến mặt đường (làm tròn kết quả đến chữ số thập phân thứ nhất).
Lời giải:
Chọn hệ trục tọa độ Oxy sao cho O là trung điểm AB. Tia Ox trùng với tia OB, tia Oy vuông góc với tia Ox tại O, hướng như hình vẽ.
Khi đó ta có: A(–200; 0); B(200; 0).
Gọi chiều cao giới hạn của cầu là h (h > 0), suy ra đỉnh cầu có tọa độ (0; h).
Ta tìm được phương trình parabol của cầu là: .
Theo cách làm ở Ví dụ 2, ta có: .
Suy ra hệ số góc xác định độ dốc của mặt cầu là:
k = với –200 ≤ x ≤ 200
Do đó, |k| = |x| ≤ .200 = .
Vì độ dốc của mặt cầu không quá nên ta có: ≤ tan10o ⇔ h ≤ 17,6.
Vậy chiều cao giới hạn từ đỉnh cầu tới mặt đường là 17,6 m.
Lời giải bài tập Toán 11 Bài 31: Định nghĩa và ý nghĩa của đạo hàm hay, chi tiết khác:
HĐ1 trang 81 Toán 11 Tập 2: Một vật di chuyển trên một đường thẳng (H.9.2) ....
HĐ2 trang 82 Toán 11 Tập 2: Điện lượng Q truyền trong dây dẫn là một hàm số của thời gian t ....
Luyện tập 1 trang 83 Toán 11 Tập 2: Tính đạo hàm của hàm số y = –x2 + 2x + 1 tại điểm x0 = –1 ....
HĐ3 trang 83 Toán 11 Tập 2: Tính đạo hàm f'(x0) tại điểm x0 bất kì trong các trường hợp sau ....
HĐ4 trang 84 Toán 11 Tập 2: Nhận biết tiếp tuyến của đồ thị hàm số ....
Luyện tập 3 trang 85 Toán 11 Tập 2: Tìm hệ số góc của tiếp tuyến của parabol y = x2 tại điểm ....
HĐ5 trang 85 Toán 11 Tập 2: Cho hàm số y = x2 có đồ thị là đường parabol (P) ....
Luyện tập 4 trang 85 Toán 11 Tập 2: Viết phương trình tiếp tuyến của parabol (P): y = –2x2 ....
Bài 9.1 trang 86 Toán 11 Tập 2: Tính (bằng định nghĩa) đạo hàm của các hàm số sau ....
Bài 9.2 trang 86 Toán 11 Tập 2: Sử dụng định nghĩa, tính đạo hàm của các hàm số sau ....
Bài 9.3 trang 86 Toán 11 Tập 2: Viết phương trình tiếp tuyến của parabol ....
Bài 9.4 trang 86 Toán 11 Tập 2: Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất ....
Bài 9.5 trang 86 Toán 11 Tập 2: Một kĩ sư thiết kế một đường ray tàu lượn, mà mặt cắt của nó ....
Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT