Giải Toán 11 trang 92 Tập 2 Kết nối tri thức

Với Giải Toán 11 trang 92 Tập 2 trong Bài 32: Các quy tắc tính đạo hàm Toán 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 92.

HĐ7 trang 92 Toán 11 Tập 2: Xây dựng công thức tính đạo hàm của các hàm số y = tan x và y = cot x

a) Bằng cách viết y=tanx=sinxcosx xπ2+kπ,k , tính đạo hàm của hàm số y = tanx.

b) Sử dụng hằng đẳng thức cotx=tanπ2x với xkπ (k, tính đạo hàm của hàm số y = cot x.

Lời giải:

a) Ta có

y' = (tanx)' = sinxcosx '

=(sinx)'.cosxsinx.(cosx)'cos2x

=cos2x+sin2xcos2x=1cos2x.

b) Ta có

y'=(cotx)'=tanπ2x'=1cos2π2x=1sin2x.

Luyện tập 5 trang 92 Toán 11 Tập 2: Tính đạo hàm của hàm số y=2tan2x+3cotπ32x .

Lời giải:

Ta có:

Luyện tập 5 trang 92 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

=2.2tanx.1cos2x+3.(2)sin2π32x

=4tanxcos2x+6sin2π32x.

Vận dụng 1 trang 92 Toán 11 Tập 2: Một vật chuyển động có phương trình s(t) = 4cos2πtπ8 (m), với t là thời gian tính bằng giây. Tính vận tốc của vật khi t = 5 giây (làm tròn kết quả đến chữ số thập phân thứ nhất).

Lời giải:

Ta có:

v(t) = s'(t) =4 Vận dụng 1 trang 92 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11= 4.2π.sin2πtπ8=8π.sin2πtπ8.

Vậy vận tốc của vật khi t = 5 giây là:

v(5)=8π.sin2π.5π89,6 (m/s).

HĐ8 trang 92 Toán 11 Tập 2: Giới hạn cơ bản của hàm số mũ và hàm số lôgarit

a) Sử dụng phép đổi biến t = 1x , tìm giới hạn limx01+x1x .

b) Với y=1+x1x , tính ln y và tìm giới hạn của limx0lny .

c) Đặt t = ex – 1. Tính x theo t và tìm giới hạn limx0ex1x .

Lời giải:

a)

Ta có: t = 1x , nên khi x → 0 thì t → + ∞ do đó:

limx01+x1x=limt+1+1tt=e.

b) Với y=1+x1x , ta có:

ln y =ln1+x1x=1xln1+x .

Khi đó, limx0lny=limx0ln1+xx=1 .

c)

t = ex – 1 ⇔ ex = t + 1 ⇔ x = ln(t + 1).

Ta có: limx0ex1x=limt0tlnt+1=1 .

Lời giải bài tập Toán 11 Bài 32: Các quy tắc tính đạo hàm hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác