Giải Toán 11 trang 53 Tập 1 Kết nối tri thức
Với Giải Toán 11 trang 53 Tập 1 trong Bài 7. Cấp số nhân Toán 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 53.
Luyện tập 1 trang 53 Toán 11 Tập 1: Cho dãy số (un) với un = 2 . 5n. Chứng minh rằng dãy số này là một cấp số nhân. Xác định số hạng đầu và công bội của nó.
Lời giải:
Với mọi n ≥ 2, ta có:
,
tức là un = 5un – 1 với mọi n ≥ 2.
Vậy (un) là một cấp số nhân với số hạng đầu u1 = 2 . 51 = 10 và công bội q = 5.
HĐ1 trang 53 Toán 11 Tập 1:
Cho cấp số nhân (un) với số hạng đầu u1 và công bội q.
a) Tính các số hạng u2, u3, u4, u5 theo u1 và q.
b) Dự đoán công thức tính số hạng thứ n theo u1 và q.
Lời giải:
a) Ta có: u2 = u1 . q;
u3 = u2 . q = (u1 . q) . q = u1 . q2;
u4 = u3 . q = (u1 . q2) . q = u1 . q3;
u5 = u4 . q = (u1 . q3) . q = u1 . q4.
b) Dự đoán công thức tính số hạng thứ n theo u1 và q là un = u1 . qn – 1 với n ≥ 2.
Lời giải bài tập Toán 11 Bài 7. Cấp số nhân hay khác:
Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT