Giải Toán 11 trang 45 Tập 1 Kết nối tri thức

Với Giải Toán 11 trang 45 Tập 1 trong Bài 5: Dãy số Toán 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 45.

HĐ4 trang 45 Toán 11 Tập 1:

a) Xét dãy số (un) với un = 3n – 1. Tính un + 1 và so sánh với u­n.

b) Xét dãy số (vn) với vn=1n2 . Tính vn + 1 và so sánh với vn.

Lời giải:

a) Ta có: un + 1 = 3(n + 1) – 1 = 3n + 3 – 1 = 3n + 2

Xét hiệu un + 1 – un ta có: un + 1 – un = (3n + 2) – (3n – 1) = 3 > 0, tức là un + 1 > un ∀ n ∈ ℕ*.

Vậy un + 1 > un ∀ n ∈ ℕ*.

b) Ta có: vn+1=1n+12 .

Xét hiệu vn + 1 – vn ta có:

vn + 1 – vn = 1n+121n2 =n2n+12n2n+12=n2n2+2n+1n2n+12=2n+1n2n+12<0 n* .

Tức là vn + 1 < vn , ∀ n ∈ ℕ*.

Vậy vn + 1 < vn ∀ n ∈ ℕ*.

Luyện tập 3 trang 45 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (un), với un=1n+1 .

Lời giải:

Ta có: un=1n+1 , un+1=1n+1+1=1n+2 .

un+1un=1n+21n+1=n+1n+2n+1n+2=1n+1n+2<0 n*

Tức là un + 1 < un , ∀ n ∈ ℕ*.

Vậy (u) là dãy số giảm.

HĐ5 trang 45 Toán 11 Tập 1:

Cho dãy số (un) với un=n+1n, n* .

a) So sánh un và 1.

b) So sánh un và 2.

Lời giải:

a) Ta có: un=n+1n=1+1n>1, n* .

b) Ta có: 1n1, n* , suy ra 1+1n1+1=2, n* .

Do đó, un=1+1n2, n* .

Lời giải bài tập Toán 11 Bài 5: Dãy số hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác