Tổng hợp lý thuyết Toán 11 Chương 2 Kết nối tri thức
Tổng hợp lý thuyết Toán 11 Chương 2: Dãy số. Cấp số cộng và cấp số nhân sách Kết nối tri thức hay nhất, chi tiết với bài tập có lời giải sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm Toán 11 Chương 2.
Lý thuyết tổng hợp Toán 11 Chương 2
1. Định nghĩa dãy số
1.1. Dãy số vô hạn
Mỗi hàm số u xác định trên tập các số nguyên dương ℕ* được gọi là một dãy số vô hạn (gọi tắt là dãy số), kí hiệu là u = u(n).
Ta thường viết un thay cho u(n) và kí hiệu dãy số u = u(n) bởi (un), do đó dãy số (un) được viết dưới dạng khai triển u1, u2, u3,…., un,…
Số u1 gọi là số hạng đầu, un là số hạng thứ n và gọi là số hạng tổng quát của dãy số.
Chú ý: Nếu ∀n ∈ ℕ*, un = c thì (un) được gọi là dãy số không đổi.
1.2. Dãy số hữu hạn
Mỗi hàm số u xác định trên tập M = {1; 2; 3; ...; m} với m ∈ ℕ*, được gọi là một dãy số hữu hạn.
Dạng khai triển của dãy số hữu hạn là u1, u2, u3,…., um.
Số u1 gọi là số hạng đầu, số um gọi là số hạng cuối.
2. Các cách cho một dãy số
• Một dãy số có thể cho bằng:
- Liệt kê các số hạng (chỉ dùng cho các dãy hữu hạn và có ít số hạng);
- Công thức của số hạng tổng quát;
- Phương pháp mô tả;
- Phương pháp truy hồi.
• Hệ thức truy hồi là hệ thức biểu thị số hạng thứ n của dãy số qua số hạng (hay vài số hạng) đứng trước nó.
• Chú ý: Để có hình ảnh trực quan về dãy số, ta thường biểu diễn các số hạng của nó trên trục số. Chẳng hạn, xét dãy số (un) với . Năm số hạng đầu của dãy số này là và được biểu diễn trên trục số như sau:
3. Dãy số tăng, dãy số giảm và dãy số bị chặn
3.1. Dãy số tăng, dãy số giảm
Dãy số (un) được gọi là dãy số tăng nếu ta có un + 1 > un với mọi n ∈ ℕ*.
Dãy số (un) được gọi là dãy số giảm nếu ta có un + 1 < un với mọi n ∈ ℕ*.
3.2. Dãy số bị chặn
Dãy số (un) được gọi là bị chặn trên nếu tồn tại một số M sao cho un ≤ M với ∀n ∈ ℕ*.
Dãy số (un) được gọi là bị chặn dưới nếu tồn tại một số m sao cho un ≥ m với ∀n ∈ ℕ*.
Dãy số (un) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho m ≤ un ≤ M với ∀n ∈ ℕ*.
4. Định nghĩa cấp số cộng
- Cấp số cộng là một dãy số (hữu hạn hay vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d. Số d được gọi là công sai của cấp số cộng.
- Cấp số cộng (un) với công sai d được cho bởi hệ thức truy hồi: un = un - 1 + d với n ≥ 2.
- Chú ý: Dãy số không đổi a, a, a, ... là một cấp số cộng với số hạng đầu là a và công sai d = 0.
5. Số hạng tổng quát của cấp số cộng
Nếu cấp số cộng (un) có số hạng đầu u1 và công sai d thì số hạng tổng quát un của nó được xác định theo công thức
un = u1 + (n – 1)d.
6. Tổng n số hạng đầu của một cấp số cộng
- Cho cấp số cộng (un) với công sai d. Đặt Sn = u1 + u2 + …. + un. Khi đó
Sn = [2u1+(n-1)d].
Chú ý: Sử dụng công thức un = u1 + (n – 1)d, ta có thể viết tổng Sn dưới dạng
7. Định nghĩa cấp số nhân
- Cấp số nhân là một dãy số (hữu hạn hay vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng tích của số hạng đứng ngay trước nó với một số không đổi q. Số q được gọi là công bội của cấp số nhân.
- Cấp số nhân (un) với công bội q được cho bởi hệ thức truy hồi: un = un–1 . q với n ≥ 2.
Chú ý: Dãy số không đổi a, a, a, .... là một cấp số nhân với số hạng đầu là a và công bội q = 1.
8. Số hạng tổng quát của cấp số nhân
Nếu một cấp số nhân có số hạng đầu u1 và công bội q thì số hạng tổng quát un của nó được xác định bởi công thức:
un = u1 . qn–1 với n ≥ 2.
9. Tổng n số hạng đầu của một cấp số nhân
Cho cấp số nhân (un) với công sai q ≠ 1. Đặt Sn = u1 + u2 + …. + un. Khi đó:
Bài tập tổng hợp Toán 11 Chương 2
Bài 1: Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:
a) un = 4n – 2;
b) un = 3 . 2n + 1.
Hướng dẫn giải
a) Năm số hạng đầu của dãy số là: 2, 6, 10, 14, 18.
Số hạng thứ 100 của dãy số là: u100 = 4.100 – 2 = 398.
b) Năm số hạng đầu của dãy số là: 7, 13, 25, 49, 97.
Số hạng thứ 100 của dãy số là: u100 = 3 . 2100 + 1.
Bài 2: Dãy số (un) cho bởi hệ thức truy hồi: u1 = 1, un = n . un-1 với n ≥ 2.
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức số hạng tổng quát un.
Hướng dẫn giải
a) Năm số hạng đầu của dãy số là: 1, 2, 6, 24, 120.
b) Ta thấy u1 =1!, u2 = 2!, u3 = 3!, u4 = 4!, u5 = 5!.
Vậy công thức số hạng tổng quát là un = n!.
Bài 3: Xét tính tăng, giảm của dãy số (un), biết:
a) un = 3n – 1;
b) un = – 3n + 1.
Hướng dẫn giải
a) Ta có: un+1 – un = [3(n + 1) – 1] – (3n – 1) = (3n + 2) – 3n + 1 = 3 > 0, tức là un+1 > un
Suy ra đây là dãy số tăng.
b) Ta có: un+1 – un = [–3(n + 1) + 1] – (–3n + 1) = (–3n – 2) + 3n – 1 = – 3 < 0, tức là un+1 < un.
Suy ra đây là dãy số giảm.
Bài 4: Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) un = 2n – 1;
b) un = ;
c) un = cos n.
Hướng dẫn giải
a) un = 2n – 1 ≥ 1 với ∀n ∈ ℕ*
Vậy dãy số (un) bị chặn dưới.
b) Dãy số (un) bị chặn trên, vì , ∀n ∈ ℕ*.
Dãy số (un) bị chặn dưới, vì , ∀n ∈ ℕ*.
Vậy dãy số (un) bị chặn.
c) Ta có: −1 ≤ cos n ≤ 1 ∀n ∈ ℕ*.
Vậy dãy số (un) bị chặn.
Bài 5: Ông An gửi tiết kiệm 50 triệu đồng kì hạn 1 tháng với lãi suất 7% một năm theo hình thức tính lãi kép. Số tiền (triệu đồng) của ông An thu được sau n tháng được cho bởi công thức
= 50.
a) Tìm số tiền ông An nhận được sau tháng thứ nhất, sau tháng thứ hai.
b) Tìm số tiền ông An nhận được sau 1 năm.
Hướng dẫn giải
a) Số tiền ông An nhận được sau tháng thứ nhất là:
= 50 = 50,2917(triệu đồng).
Số tiền ông An nhận được sau tháng thứ hai là:
= 50 = 50,585 (triệu đồng).
b) 1 năm = 12 tháng
Số tiền ông An nhận được sau 1 năm là:
= 50 = 53,6145(triệu đồng).
Bài 6: Xác định công sai, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số cộng sau:
a) 3, 8, 13, 18, ...;
b) 1, –2, –5, –8, ...
Hướng dẫn giải
a) Ta thấy: 8 – 3 = 5; 13 – 8 = 5
Suy ra cấp số cộng có u1 = 3, công sai d = 5
Số hạng tổng quát của dãy số là: un = 3 + 5(n – 1) = 3 + 5n – 5 = 5n – 2.
Số hạng thứ 5: u5 = 3 + 5 . (5 – 1) = 23
Số hạng thứ 100: u100 = 3 + 5 . (100 – 1) = 498.
b) Ta thấy: –2 – 1= –3; –5 – (–2) = –3
Suy ra cấp số cộng có u1 = 1, công sai d = –3
Số hạng tổng quát của dãy số là: un = 1 – 3(n − 1) = 1 – 3n + 3 = 4 – 3n.
Số hạng thứ 5: u5 = 1 − 3. (5 – 1) = −11
Số hạng thứ 100: u100 = 1 – 3. (100 – 1) = −296.
Bài 7: Viết năm số hạng đầu của mỗi dãy số (un) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng un = u1 + (n – 1)d.
a) un = 3 + 4n;
b) un = 6n − 4;
c) u1 = 3, un = un–1 + n.
Hướng dẫn giải
a) u1 = 7; u2 = 11; u3 = 15; u4 = 19; u5 = 23
Ta có: un − un–1= 3 + 4n − [3 + 4(n − 1)] = 4, với ∀n ≥ 2.
Suy ra dãy số là cấp số cộng có u1 = 7 và công sai d = 4
Số hạng tổng quát: un = 7 + 4(n − 1).
b) u1 = 2; u2 = 8; u3 = 14; u4 = 20; u5 = 26
Ta có: un − un–1 = 6n − 4 − [6(n − 1) − 4] = 6, với ∀ n ≥ 2.
Suy ra dãy số là cấp số cộng có u1 = 2 và công sai d = 6.
Số hạng tổng quát: un = 2 + 6(n − 1).
c) u1 = 3; u2 = 5; u3 = 8; u4 = 12; u5 =17
Ta có: u2 − u1 = 2 ≠ u3 – u2 = 3
Suy ra đây không phải cấp số cộng.
Bài 8: Một cấp số cộng có số hạng thứ 5 bằng 22 và số hạng thứ 12 bằng 43. Tìm số hạng thứ 50 của cấp số cộng này.
Hướng dẫn giải
Giả sử u1 là số hạng đầu và d là công sai của cấp số cộng đó. Ta có:
u5 = u1 + 4d = 22
u12 = u1 + 11d = 43
Giải hệ phương trình gồm hai phương trình trên ta được u1 = 10 và d = 3.
Vậy số hạng thứ 50 của cấp số cộng này là u50 = u1 + 49d = 10 + 49 . 3 = 157.
Bài 9: Một cấp số cộng có số hạng đầu bằng 1 và công sai bằng 4. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 561?
Hướng dẫn giải
Gọi n là số các số hạng đầu cần lấy tổng, ta có:
561 = Sn = [2.1+(n-1).4] = (-2+4n) = –n + 2n2
Do đó 2n2 – n – 561 = 0.
Giải phương trình bậc hai này ta được n = –16,5 (loại) hoặc n = 17.
Vậy ta phải lấy 17 số hạng đầu của cấp số cộng đã cho để có tổng bằng 561.
Bài 10: Vào năm 2020, dân số của một thành phố là khoảng 1,5 triệu người. Giả sử mỗi năm, dân số của thành phố này tăng thêm khoảng 15 nghìn người. Hãy ước tính dân số của thành phố vào năm 2030.
Hướng dẫn giải
Dân số mỗi năm của thành phố lập thành cấp số cộng có u1 = 1 500 (nghìn người), công sai d = 15.
Dân số mỗi năm có dạng tổng quát là: un = 1 500 + 15(n − 1).
Dân số của năm 2030 tức n = 11 thì u11 = 1 500 + 15 . (11 − 1) = 1 650 (nghìn người)
Vậy ước tính dân số của thành phố năm 2030 là 1650 nghìn người hay 1,65 triệu người.
Bài 11: Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau:
a) 1, 3, 9, ...;
b) 3, , ….
Hướng dẫn giải
a) Ta thấy: 3 : 1 = 3, 9 : 3 = 3
Suy ra công bội q = 3
Số hạng tổng quát của cấp số nhân là: un = 3n–1.
Số hạng thứ 5: u5 = 35–1 = 81.
Số hạng thứ 100: u100 = 3100–1 = 399.
b) Ta thấy:
Suy ra cấp số nhân có công bội q = .
Số hạng tổng quát của cấp số nhân là: un = 3..
Số hạng thứ 5: u5 =3.= .
Số hạng thứ 100:
u100 =
Bài 12: Viết năm số hạng đầu của dãy số (un) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức số hạng tổng quát của nó dưới dạng un = u1 . qn–1.
a) un = 4n;
b) un = 3n;
c) u1 = 2, un = nun–1.
Hướng dẫn giải
a) Năm số hạng đầu của dãy là: 4, 8, 12, 16, 20
Ta có: 8 : 4 = 2 ≠ 12 : 8 = nên (un) không phải là cấp số nhân.
b) Năm số hạng đầu của dãy là: 3; 9; 27; 81; 243
Ta có: = 3 với mọi n ≥ 2
Suy ra dãy số là cấp số nhân với u1 = 3 và công bội q = 3.
Số hạng tổng quát: un = 3 . 3n–1.
c) Năm số hạng đầu của dãy là: 2; 4; 12; 48; 240
Ta có: 4 : 2 = 2 ≠ 12 : 4 = 3 nên (un) không phải là cấp số nhân.
Bài 13: Một cấp số nhân có số hạng thứ 6 bằng 10 240 và số hạng thứ 3 bằng 160. Tìm số hạng thứ 50 của cấp số nhân này.
Hướng dẫn giải
Giả sử u1 là số hạng đầu và q là công bội của cấp số nhân đó. Ta có:
u6 = u1 . q5 = 10 240 (1)
u3 = u1 . q2 = 160 (2)
Lấy (1) chia vế theo vế (2) ta được: q3 = 64. Suy ra q = 4.
Với q = 4, ta tính được u1 = 10.
Suy ra công thức số hạng tổng quát của cấp số nhân là: un = 10 . 4n–1
Vậy số hạng thứ 50 của cấp số nhân này là u50 = 10 . 450–1 = 10 . 449.
Bài 14: Một cấp số nhân có số hạng đầu bằng 4 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 131 068?
Hướng dẫn giải
Số hạng tổng quát của cấp số nhân là: un = 4 . 2n–1.
Gọi n là số các số hạng cần lấy tổng, ta có
131 068 = Sn = = 4 . 2n – 4
Suy ra: 2n = 32768 = 215, do đó n = 15.
Vậy ta phải lấy 15 số hạng đầu của cấp số nhân.
Học tốt Toán 11 Chương 2
Các bài học để học tốt Tổng hợp lý thuyết Toán 11 Chương 2 Toán lớp 11 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 11 hay khác:
Lý thuyết Toán 11 Bài 9: Các số đặc trưng đo xu thế trung tâm
Lý thuyết Toán 11 Bài 10: Đường thẳng và mặt phẳng trong không gian
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT