Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức
Với tóm tắt lý thuyết Toán 11 Bài 2: Công thức lượng giác sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 11.
Lý thuyết Công thức lượng giác
1. Công thức cộng
cos (a – b) = cosa cosb + sina sinb
cos (a + b) = cosa cosb – sina sinb
sin (a – b) = sina cosb – cosa sinb
sin (a + b) = sina cosb + cosa sinb
tan (a-b) =
tan (a+b) =
(giả thiết các biểu thức đều có nghĩa).
Ví dụ: Không dùng máy tính, hãy tính sin và tan 15°.
Hướng dẫn giải
Ta có
sin = -sin = -sin
= -sincos - cossin = -0. - (-1). = .
Ta có
tan15o = tan(60o - 45o) =
2. Công thức nhân đôi
sin2a = 2sina cosa
cos2a = cos2a – sin2a = 2cos2 – 1 = 1 – 2sin2a
tan2a = .
Chú ý: Từ công thức nhân đôi suy ra công thức hạ bậc:
.
Ví dụ: Biết sinα = và 0 < α < . Tính sin2α ; cos2α và tan2α.
Hướng dẫn giải
Vì 0 < α < nên cosα > 0.
Ta có:
sin2α + cos2α = 1 ⇒ cos2α = 1 – sin2α = 1-=
⇒ cosα = .
Ta có: sin2α = 2sinα cosα =
cos2α = 1 – 2sin2α = 1 - 2.=
⇒ tan.
3. Công thức biến đổi tích thành tổng
cosacosb = [cos(a-b) + cos(a+b)]
sinasinb = [cos(a-b) - cos(a+b)]
sinacosb = [sin(a-b) + sin(a+b)].
Ví dụ: Tính giá trị của biểu thức
a) A = ;
b) B = .
Hướng dẫn giải
a) Ta có:
Vậy A = .
b) Ta có:
Vậy B = .
4. Công thức biến đổi tổng thành tích
cosu + cosv = 2coscos
cosu - cosv = -2sinsin
sinu + sinv = 2sincos
sinu - sinv = 2cossin.
Ví dụ: ChoA = cos.cos và B = cos + cos. Không dùng máy tính, tính giá trị của biểu thức .
Hướng dẫn giải
Ta có:
B = cos + cos = 2.cos.cos
= 2.cos.cos = 2cos.cos.
Suy ra .
Bài tập Công thức lượng giác
Bài 1. Tính sin2a và tan2a biết cos a = và
Hướng dẫn giải
Ta có:
sin2a + cos2a = 1 ⇒ sin2a = 1 – cos2a = 1 - =
⇒ sina = .
Ta có: sin2a = 2sina cosa = 2.. =
Ta có: tana =
⇒==.
Bài 2. Tính
a) sin biết sin a = và 0 < a < ;
b) cos.cos + sin.sin.
Hướng dẫn giải
a) Vì 0
Ta có: sin2a + cos2a = 1 ⇒ cos2a = 1 – sin2a = 1-=
⇒ cosa = .
Vậy sin .
Suy ra: .
Bài 3. Tính
a) cos(–15°) + cos255°;
b) sinsin.
Hướng dẫn giải
a) Ta có:
cos(-15o) + cos255o = 2.cos.cos
= 2.cos120o.cos(135o) = 2
Vậy cos(–15°) + cos255° = .
b) Ta có:
Vậy .
Học tốt Công thức lượng giác
Các bài học để học tốt Công thức lượng giác Toán lớp 11 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 11 hay khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT