Bài 1 trang 94 Toán 11 Tập 2 Cánh diều

Bài 1 trang 94 Toán 11 Tập 2: Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a.

a) Tính số đo của góc nhị diện [B, SA, C].

b) Tính số đo của góc nhị diện [B, SA, D].

c) Biết SA = a, tính số đo của góc giữa đường thẳng SC và mặt phẳng (ABCD).

Lời giải:

Bài 1 trang 94 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có: SA ⊥ (ABCD) và AB ⊂ (ABCD), AC ⊂ (ABCD).

Suy ra: SA ⊥ AB, SA ⊥ AC.

Mà AB ∩ AC = A ∈ SA.

Do đó BAC^ là góc phẳng nhị diện của góc nhị diện [B, SA, C].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AB = AC = BC = a.

Suy ra tam giác ABC đều. Khi đó BAC^=60°.

Vậy số đo của góc nhị diện [B, SA, C] = 60°.

b) Ta có: SA ⊥ (ABCD) và AB ⊂ (ABCD), AD ⊂ (ABCD).

Suy ra: SA ⊥ AB, SA ⊥ AD.

Mà AB ∩ AD = A ∈ SA.

Do đó BAD^ là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AD = AC = CD = a.

Suy ra tam giác ACD đều.

Khi đó CAD^=60°.

Ta có: BAD^=BAC^+CAD^=60°+60°=120°.

Vậy số đo của góc nhị diện [B, SA, D] bằng 120°.

c) Vì SA ⊥ (ABCD) nên AC là hình chiếu của SC trên (ABCD).

Suy ra góc giữa đường thẳng SA và mặt phẳng (ABC) là góc SCA^.

Xét tam giác SAC vuông tại (do SA ⊥ AC theo câu a) có:

tanSCA^=SAAC=aa=1. Do đó SCA^=45°.

Vậy góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 45°.

Lời giải bài tập Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác