Giải Toán 10 trang 43 Tập 1 Kết nối tri thức
Với Giải Toán 10 trang 43 Tập 1 trong Bài 6: Hệ thức lượng trong tam giác Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 43.
Bài 3.9 trang 43 Toán 10 Tập 1: Trên nóc một tòa nhà có một cột ăng – ten cao 5m, Từ một vị trí quan sát A cao 7m so với mặt đất có thể nhìn thấy đỉnh B và chân C của cột ăng – ten, với các góc tương ứng là 500 và 400 so với phương nằm ngang (H.3.18).
a) Tính các góc của tam giác ABC.
b) Tính chiều cao của tòa nhà.
Lời giải:
Ta có hình vẽ sau:
a) Ta có:
Xét ΔABH, vuông tại H, có: (hai góc phụ nhau)
= 900 – 500 = 400
Xét ΔABC, có:
= 1800 – 100 – 400 = 1300.
b) Xét ΔABC, có:
Xét ΔABH, có:
Suy ra CH = BH – BC ≈ 16,9 – 5 = 11,9 (m)
Do đó chiều cao của tòa nhà là: 11,9 + 7 = 18,9 (m).
Vậy chiều cao của tòa nhà xấp xỉ bằng 18,9 m.
Bài 3.10 trang 43 Toán 10 Tập 1: Từ bãi biển Vũng Chùa, Quảng Bình ta có thể ngắm được Đảo yến. Hãy đề xuất cách xác định bề rộng của hòn đảo (theo chiều ta ngắm được).
Lời giải:
Bước 1. Trên bờ, đặt một cọc ở vị trí A, một cọc ở vị trí B, một cọc ở vị trí C. Đo khoảng cách AB, AC.
Bước 2. Đứng tại A ngắm điểm B và điểm E để đo góc tạo bởi hai hướng ngắm đó là góc . Đứng tại B ngắm điểm E và điểm A để đo góc tạo bởi hai hướng ngắm đó là góc
Bước 3. Dựa vào định lí sin trong tam giác ABE ta tính được cạnh AE.
Bước 4. Đứng tại A ngắm điểm C và điểm D để đo góc tạo bởi hai hướng ngắm đó là góc . Đứng tại C ngắm điểm D và điểm A để đo góc tạo bởi hai hướng ngắm đó là góc
Bước 5. Dựa vào định lí sin trong tam giác ADC tính được AD.
Bước 6. Xét tam giác ADE, sử dụng định lí cos để tính cạnh DE.
Vậy độ dài DE chính là chiều rộng của đảo.
Bài 3.11 trang 43 Toán 10 Tập 1: Để tránh núi, đường giao thông hiện tại phải đi vòng như mô hình trong Hình 3.19. Để rút ngắn khoảng cách và tránh sạt lở núi, người ta dự định làm đường hầm xuyên núi, nối thẳng từ A tới D. Hỏi độ dài đường mới sẽ giảm bao nhiêu kilômét so với đường cũ.
Lời giải:
Ta có hình vẽ sau:
Xét ΔABC, có:
AC2 = AB2 + BC2 – 2AB.BC.cosB (định lí cos)
= 82 + 62 – 2.8.6.cos1050
≈ 124,85
⇒ AC ≈ 11,17 km.
Xét ΔADC, có:
AD2 = AC2 + DC2 – 2AC.DC.cosACD (định lí cos)
= 11,172 + 122 – 2.11,17.12.cos91,230
≈ 274,52
⇒ AD ≈ 16,57 km.
Độ dài đoạn đường cũ là: AB + BC + CD = 8 + 6 + 12 = 26 km.
Độ dài đường cũ hơn độ dài đoạn đường mới: 26 – 16,57 = 9,43 km.
Vậy độ dài đường mới giảm 9,43 km so với đoạn đường cũ.
Lời giải bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác hay khác:
- Giải Toán 10 trang 38
- Giải Toán 10 trang 39
- Giải Toán 10 trang 40
- Giải Toán 10 trang 41
- Giải Toán 10 trang 42
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT