Bài 3 trang 78 Toán 10 Tập 1 Chân trời sáng tạo

Bài 3 trang 78 Toán lớp 10 Tập 1: Cho tam giác ABC có a = 8, b = 10, c = 13.

a) Tam giác ABC có góc tù không?

b) Tính độ dài trung tuyến AM, diện tích tam giác và bán kính đường tròn ngoại tiếp tam giác đó.

c) Lấy điểm D đối xứng với A qua C. Tính độ dài BD.

Lời giải:

a) Áp dụng hệ quả của định lí côsin ta có:

cosC = a2+b2c22ab=82+1021322.8.10=0,03125

⇒ C^91o47'26''

Suy ra C^>90o

Vậy tam giác ABC là tam giác tù.

b) Do AM là đường trung tuyến nên M là trung điểm của BC, tức là MB = MC = BC : 2 = 4.

Bài 3 trang 78 Toán 10 Tập 1 Chân trời sáng tạo | Giải Toán 10

Áp dụng định lí côsin cho tam giác ACM ta có:

AM2 = AC2 + CM2 – 2.AC.CM.cosC = 102 + 42 – 2.10.4.cos91°47'26" = 118,5

⇒ AM ≈ 10,9.

Nửa chu vi của tam giác ABC là : p=a+b+c2=8+10+132=15,5

Áp dụng công thức Heron ta có diện tích tam giác ABC là:

S=p(pa)(pb)(pc)=15,5.(15,58).(15,510).(15,513)40

Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC. Khi đó ta có:

S=abc4RR=abc4S=8.10.134.40=6,5

Vậy độ dài đường trung tuyến AM ≈ 10,9; diện tích tam giác ABC là 40; bán kính đường tròn ngoại tiếp tam giác ABC là 6,5.

c) Vì D đối xứng với A qua C nên C là trung điểm của AD.

Suy ra AD = 2AC = 2.10 = 20.

Áp dụng hệ quả của định lí côsin cho tam giác ABC ta có:

cosA = b2+c2a22bc=102+132822.10.13=205260=4152

Áp dụng định lí côsin cho tam giác ABD ta có:

BD2 = AD2 + AB2 – 2.AD.AB.cosA = 202 + 132 – 2.20.13. 4152 = 159

⇒ BD = 159  ≈ 12,6.

Vậy BD ≈ 12,6.

Lời giải bài tập Toán 10 Bài tập cuối chương 4 hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài tập cuối chương 4:

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác