Bài 2 trang 56 Toán 10 Tập 1 Chân trời sáng tạo

Bài 2 trang 56 Toán lớp 10 Tập 1: Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai.

a) y = mx4 + (m + 1)x2 + x + 3;

b) y = (m – 2)x3 + (m – 1)x2 + 5.

Lời giải:

a) Để hàm số y = mx4 + (m + 1)x2 + x + 3 là hàm bậc hai thì hệ số của x4 phải bằng 0 và hệ số của x2 phải khác không tức là: m=0m+10m=0m1m=0

Vậy với m = 0 thì hàm số đã cho là hàm số bậc hai.

b) Để hàm số y = (m – 2)x3 + (m – 1)x2 + 5 là hàm số bậc hai thì hệ số của x3 phải bằng 0 và hệ số của x2 phải khác không tức là: m2=0m10m=2m1m=2

Vậy với m = 2 thì hàm số đã cho là hàm số bậc hai.

Lời giải bài tập Toán 10 Bài 2: Hàm số bậc hai hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 2: Hàm số bậc hai:

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác