Giải Toán 10 trang 63 Tập 2 Cánh diều

Với Giải Toán 10 trang 63 Tập 2 trong Bài 1: Tọa độ của vectơ Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 63.

Hoạt động 4 trang 63 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho vectơ u=a; b. Ta chọn điểm A sao cho OA=u.

Xét vectơ đơn vị i trên trục hoành Ox và vectơ đơn vị j trên trục tung Oy (Hình 12).

Trong mặt phẳng tọa độ Oxy, cho vectơ u(a,b)

a) Tìm hoành độ và tung độ của điểm A.

b) Biểu diễn vectơ OH qua vectơ i.

c) Biểu diễn vectơ OK qua vectơ j.

d) Chứng tỏ rằng u=ai+bj.

Lời giải:

a) Ta có: OA=u, mà (a; b) là tọa độ của vectơ u nên điểm A có hoành độ là a và tung độ là b.

b) Điểm H biểu diễn số a trên trục Ox nên OH=ai.

c) Điểm K biểu diễn số b trên trục Oy nên OK=bj.

d) Áp dụng quy tắc hình bình hành ta có: OA=OK+OH.

OH=ai,OK=bj nên OA=ai+bj.

Theo bài ra ta có: OA=u.

Vậy u=ai+bj.

Luyện tập 2 trang 63 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho điểm B(– 1; 0) và vectơ v = (0; – 7).

a) Biểu diễn v vectơ qua hai vectơ ij.

b) Biểu diễn OB vectơ qua hai vectơ ij.

Lời giải:

a) Vì v = (0; – 7) nênv=0.i+7.j=7j.

b) Vì điểm B có tọa độ là (– 1; 0) nên OB=1; 0. Do đó:

OB=1.i+0.j=i.

Lời giải bài tập Toán 10 Bài 1: Tọa độ của vectơ hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác