Bài 5 trang 99, 100 Toán 10 Tập 1 Cánh diều

Bài 5 trang 99, 100 Toán lớp 10 Tập 1: Một người đứng ở bờ sông, muốn đo độ rộng của khúc sông chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song với nhau).

Bài 5 trang 99, 100 Toán 10 Tập 1 Cánh diều | Giải Toán 10

Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đó di chuyển dọc bờ sông đến vị trí B cách A một khoảng d = 50 m và tiếp tục đo được góc nghiêng β = 65° so với bờ bên kia tới vị trí C đã chọn (Hình 72). Hỏi độ rộng của khúc sông chảy qua vị trí người đó đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Lời giải:

Bài 5 trang 99, 100 Toán 10 Tập 1 Cánh diều | Giải Toán 10

Dựng AD vuông góc với hai bên bờ sông, khi đó AD là độ rộng của khúc sông chạy qua vị trí của người đó đang đứng. Ta cần tính khoảng cách AD. 

Xét tam giác ABC ta có: CAB^+ACB^=65° (tính chất góc ngoài tại đỉnh B của tam giác)

Suy ra ACB^=65°CAB^=65°35°=30°

Lại có ABC^=180°65°=115°

Áp dụng định lí sin trong tam giác ABC ta có: ABsinACB^=ACsinABC^.

Suy ra AC=AB.sinABC^sinACB^=50.sin115°sin30°90,6

Ta có: DAC^=90°35°=55°

Tam giác ADC vuông tại D nên cosDAC^=ADAC.

AD=AC.cosDAC^=90,6.cos55°52,0 (m).

Vậy độ rộng của khúc sông chảy qua vị trí người đó đang đứng là 52,0 m. 

Lời giải bài tập Toán 10 Bài tập cuối chương 4 trang 99, 100 hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài tập cuối chương 4:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác