Bài 1 trang 99 Toán 10 Tập 1 Cánh diều

Bài 1 trang 99 Toán lớp 10 Tập 1: : Cho tam giác ABC có AB = 3, AC = 4, BAC^=120°. Tính (làm tròn kết quả đến hàng đơn vị):

a) Độ dài cạnh BC và độ lớn góc B;

b) Bán kính đường tròn ngoại tiếp;

c) Diện tích của tam giác;

d) Độ dài đường cao xuất phát từ A;

e) AB.AC,AM.BC với M là trung điểm của BC.

Lời giải:

Bài 1 trang 99 Toán 10 Tập 1 Cánh diều | Giải Toán 10

a) + Áp dụng định lí côsin trong tam giác ABC ta có:

BC2 = AB2 + AC­2 – 2 . AB . AC . cosBAC^

        = 32 + 42 – 2 . 3. 4 . cos 120°

        = 9 + 16 – (– 12)

        = 37

Suy ra: BC=376.

+ Ta có: cosB=AB2+BC2AC22.AB.BC=32+62422.3.6=2936

Suy ra B^36°.

b) Áp dụng định lí sin trong tam giác ABC ta có: BCsinA=2R

Suy ra: R=BC2sinA=62.sin120°=233.

Vậy bán kính đường tròn ngoại tiếp tam giác ABC là R ≈ 3.

c) Diện tích tam giác ABC là:

S=12AB.AC.sinA=12.3.4.sin120°=335.

d) Kẻ đường cao AH.

Ta có diện tích tam giác ABC là: S=12AH.BC

Suy ra: AH=2SBC=2.562.

e)

+ Ta có:

AB.AC=AB.AC.cosAB,AC

=AB.AC.cosBAC^

= 3 . 4 . cos 120° = – 6.

Do đó: AB  .AC=6.

+ Do M là trung điểm của BC nên ta có: AB+AC=2AM.

Suy ra: AM=12AB+AC.

Khi đó: AM.BC=12AB+AC.BC

=12AB+AC.BA+AC

=12AB+AC.AB+AC

=12AC+AB.ACAB

=12AC2AB2

=12ACAB=1243=12

Vậy AM.BC=12.

Lời giải bài tập Toán 10 Bài tập cuối chương 4 trang 99, 100 hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài tập cuối chương 4:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác