Bài 5 trang 18 Toán 10 Tập 1 Cánh diều

Bài 5 trang 18 Toán lớp 10 Tập 1: Tìm D = E ∩ G biết E và G lần lượt là tập nghiệm của hai bất phương trình trong mỗi trường hợp sau:

a) 2x + 3 ≥ 0 và – x + 5 ≥ 0;

b) x + 2 > 0 và 2x – 9 < 0.

Lời giải:

Chú ý: D = E ∩ G hay tập hợp D là giao của hai tập hợp E và G. Ta cần tìm tập E, G bằng cách tìm tập nghiệm của các bất phương trình đã cho rồi từ đó suy ra tập hợp D.

a) 2x + 3 ≥ 0 và – x + 5 ≥ 0

Ta giải các bất phương trình.

2x + 3 ≥ 0 ⇔ x ≥32

Khi đó E =  x|x32 =32;+.

– x + 5 ≥ 0 ⇔ x ≤ 5

Khi đó G = {x | x ≤ 5} = (– ∞; 5]

Vậy D = E ∩ G = 32;+;5 = 32;5.

b) x + 2 > 0 và 2x – 9 < 0

Ta có: x + 2 > 0 ⇔ x > – 2

Khi đó E = {x | x > – 2} = (– 2; + ∞)

Lại có: 2x – 9 < 0x<92

Khi đó G =x|x<92

Vậy D=EG=2;+;92=2;92.

Lời giải bài tập Toán 10 Bài 2: Tập hợp. Các phép toán trên tập hợp hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 2: Tập hợp và các phép toán trên tập hợp:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác