Trong Hình 10, cho biết ABCD là hình thang, AB // CD (AB < CD); M là trung điểm

Bài 6 trang 60 SBT Toán 8 Tập 2: Trong Hình 10, cho biết ABCD là hình thang, AB // CD (AB < CD); M là trung điểm của DC; AM cắt BD ở I; BM cắt AC ở K; IK cắt AD, BC lần lượt ở E, F. Chứng minh:

a) IK // AB;

b) EI = IK = KF.

Trong Hình 10, cho biết ABCD là hình thang, AB // CD (AB < CD); M là trung điểm

Lời giải:

a) Vì M là trung điểm của CD nên DM = MC.

Do AB // CD, M ∈ CD nên AB // DM, AB // CM.

Xét ∆IDM với AB // DM, ta có: IAIM=ABDM=ABMC (do DM = MC) (1)

Xét ∆MKC với AB // CM, ta có: KBKM=ABMC (2).

Từ (1) và (2) suy ra IAIM=KBKM

Xét ∆ABM có IAIM=KBKM nên IB // AB (định lí Thalès đảo).

b) Áp dụng định lí Thalès cho ∆ADM với EI // DM, ta có EIDM=AIAM (3)

Áp dụng định lí Thales cho ∆AMB với IK // AB, ta có AIAM=BKBM

Áp dụng định lí Thales cho ∆BMC với KF // MC, ta có BKBM=KFMC

Do đó, ta có: EIDM=AIAM=BKBM=KFMC.

Suy ra EI = KF (do DM = MC). (*)

Mặt khác, áp dụng định lí Thalès cho ∆AMC với IK // MC, ta có: IKMC=AIAM (4)

Từ (3) và (4) suy ra IKMC=EIDM hay IK = EI (do MC = DM). (**)

Từ (*) và (**) suy ra EI = IK = KF

Lời giải SBT Toán 8 Bài 1: Định lí Thalès trong tam giác hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Cánh diều khác