Cho năm điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE

Bài 4.40 trang 66 sách bài tập Toán lớp 7 Tập 1: Cho năm điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE.

a) Chứng minh rằng AB = CE.

b) Cho đường thẳng CE cắt AB tại F. Chứng minh rằng BFC^=90°.

Cho năm điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE

Lời giải:

a) Xét ∆ABD và ∆CED có:  

ADB^=CDE^=90° (giả thiết)

DA = DC (giả thiết)

DB = DE (giả thiết)

Do đó, ∆ABD = ∆CED (hai cạnh góc vuông).

Suy ra, AB = CE (hai cạnh tương ứng).

b) Vì ∆ABD = ∆CED nên BAD^=ECD^ (hai góc tương ứng).

Lại có: BAD^+ABC^=90° (do tam giác ABD vuông ở D) nên ECD^=ABC^=90°.

Xét tam giác BFC có:

BFC^+CBF^+BCF^=180°

Mà CBF^ chính là góc ABC^BCF^ chính là góc ECD^.

Do đó, CBF^+BCF^=90°.

Nên BFC^+90°=180°

Suy ra BFC^ = 180° – 90° = 90° (điều phải chứng minh).

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Kết nối tri thức khác