Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41)

Bài 4.39 trang 66 sách bài tập Toán lớp 7 Tập 1: Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:

a) AF = CE.

b) AF // CE.

Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41)

Lời giải:

a) Vì ABCD là hình chữ nhật nên AD = BC; AB = CD.

Ta có: AD = AE + ED; BC = BF + FC mà FC = AE (gt) và AD = BC nên ED = BF.

Vì ABCD là hình chữ nhật nên ABC^=BCD^=CDA^=DAB^=90°.

Xét ∆ABF và ∆CDE có:

AB = CD (chứng minh trên)

BF = ED (chứng minh trên)

ABF^=CDE^=90° (do ABC^=CDA^=90°)

Do đó, ∆ABF = ∆CDE (hai cạnh góc vuông).

Suy ra, AF = CE.

b) Vì ∆ABF = ∆CDE nên AFB^=CED^ (hai góc tương ứng).

Lại có ABCD là hình chữ nhật nên AD // BC nên CED^=ECF^ (hai góc so le trong).

Ta có: AFB^=CED^; CED^=ECF^ nên AFB^=ECF^.

Mà hai góc này ở vị trí đồng vị

Nên AF // CE (điều phải chứng minh).

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Kết nối tri thức khác