Một máy bay loại nhỏ bắt đầu hạ cánh, đường bay của nó gắn với hệ trục tọa độ Oxy

Bài 82* trang 38 SBT Toán 12 Tập 1: Một máy bay loại nhỏ bắt đầu hạ cánh, đường bay của nó gắn với hệ trục tọa độ Oxy với mô phỏng ở Hình 24. Biết đường bay của nó có dạng đồ thị hàm số bậc ba; vị trí bắt đầu hạ cánh có tọa độ (−4; 1) là điểm cực đại của đồ thị hàm số và máy bay tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số.

Một máy bay loại nhỏ bắt đầu hạ cánh, đường bay của nó gắn với hệ trục tọa độ Oxy

a) Tìm công thức xác định hàm số mô phỏng đường bay của máy bay trên đoạn [−4; 0].

b) Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay bay cách mặt đất bao nhiêu dặm? (Biết đơn vị trên hệ trục tọa độ là dặm).

c) Khi ở độ cao 0,5 dặm, máy bay cách vị trí hạ cánh theo phương ngang bao nhiêu dặm?

Lời giải:

a) Gọi hàm số mô phỏng đường bay của máy bay trên đoạn [−4; 0] là:

   y = ax3 + bx2 + cx + d (a ≠ 0).

   y' = 3ax2 + 2bx + c

Hàm số đi qua các điểm (−4; 1), (0; 0).

Đi qua điểm (0; 0) nên d = 0.

Đi qua điểm (−4; 1) nên −64a + 16b – 4c = 1 (1).

Theo đề: (−4; 1) là điểm cực đại của đồ thị hàm số và (0; 0) là điểm cực tiểu của đồ thị hàm số nên: y'(−4) = 0 và y'(0) = 0.

⇒ 48a − 8b + c = 0 (2) và c = 0 (3).

Từ (1), (2), (3) suy ra Một máy bay loại nhỏ bắt đầu hạ cánh, đường bay của nó gắn với hệ trục tọa độ Oxy

Vậy y = 132 x3 + 316 x2.

b) Thay x = −3 vào y = 132 x3 + 316 x2 ta được y = 2732 .

Vậy khi máy bay bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất 2732 = 0,84375 (dặm).

c) Thay y = 0,5 ta được phương trình:

132x3 + 316 x2 = 0,5 có nghiệm x = −2, x = −2 ± 23.

Do x ∈ [−4; 0] nên x = −2 thỏa mãn.

Vậy khi ở độ cao 0,5 dặm, máy bay cách vị trí hạ cánh theo phương ngang 2 dặm.

Lời giải SBT Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác