Cho hàm số bậc ba y = f(x) = ax^3 + bx^2 + cx + d có đồ thị là đường cong như Hình 22

Bài 78 trang 37 SBT Toán 12 Tập 1: Cho hàm số bậc ba y = f(x) = ax3 + bx2 + cx + d có đồ thị là đường cong như Hình 22.

Cho hàm số bậc ba y = f(x) = ax^3 + bx^2 + cx + d có đồ thị là đường cong như Hình 22

Căn cứ vào đồ thị hàm số:

a) Tìm khoảng đơn điệu, điểm cực đại, cực tiểu của hàm số.

b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn [−1; 2].

c) Tìm điểm trên đồ thị hàm số có hoành độ bằng 2.

d) Tìm điểm trên đồ thị hàm số có tung độ bằng 2.

e) Đường thẳng y = 1 cắt đồ thị hàm số y = f(x) tại mấy điểm?

g) Với giá trị nào của x thì −2 < f(x) < 2.

h) Tìm công thức xác định hàm số f(x).

Lời giải:

a) Dựa vào đồ thị Hình 22, ta có:

Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0, đạt cực tiểu tại x = 2.

b) Trên đoạn [−1; 2], hàm số đạt giá trị lớn nhất bằng 2 tại x = 0, hàm số đạt giá trị nhỏ nhất bằng −2 tại x = 2, x = −1.

c) Điểm thỏa mãn là: (2; −2).

d) Điểm thỏa mãn là: (0; 2) và (3; 2).

e) Đường thẳng y = 1 cát đồ thị hàm số y = f(x) tại ba điểm.

Cho hàm số bậc ba y = f(x) = ax^3 + bx^2 + cx + d có đồ thị là đường cong như Hình 22

g) Để −2 < f(x) < 2 thì x ∈ (−1; 3)\{0; 2}.

h) Hàm số y = f(x) = ax3 + bx2 + cx + d

Hàm số đi qua điểm (0; 2) nên d = 2.

Hàm số đi qua điểm (2; −2) nên 8a + 4b + 2c + 2 = −2 hay 4a + 2b + c = −2 (1).

Hàm số đi qua điểm (3; 2) nên 27a + 9b + 3c + 2 = 2 hay 9a + 3b + c = 0 (2).

Hàm số đi qua điểm (−1; −2) nên −a + b – c + 2 = −2 hay −a + b – c = −4 (3).

Từ (1), (2), (3) ta có hệ phương trình: Cho hàm số bậc ba y = f(x) = ax^3 + bx^2 + cx + d có đồ thị là đường cong như Hình 22

Vậy y = f(x) = x3 – 3x2 + 2.

Lời giải SBT Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác