Cho hàm số y = f(x) = (ax^2+bx+c)/(mx+n) với (a, m ≠ 0) có đồ thị là đường cong như Hình 23
Bài 79 trang 38 SBT Toán 12 Tập 1: Cho hàm số y = f(x) = với (a, m ≠ 0) có đồ thị là đường cong như Hình 23.
Căn cứ vào đồ thị hàm số:
a) Tìm khoảng đơn điệu, điểm cực đại, cực tiểu của hàm số.
b) Viết phương trình đường tiệm cận đứng, tiệm cận xiên của đồ thị hàm số.
c) Phương trình f(x) = 3 có bao nhiêu nghiệm?
d) Tìm công thức xác định hàm số y = f(x), biết m = 1.
Lời giải:
Dựa vào đồ thị hàm số Hình 23, ta thấy:
a) Hàm số đồng biến trên các khoảng (−∞; −3) và (−1; +∞).
Hàm số nghịch biến trên các khoảng (−3; −2) và (−2; −1).
Điểm cực đại x = −3, điểm cực tiểu x = −1.
b) Tiệm cận đứng của đồ thị hàm số có phương trình x = −2.
Tiệm cận xiên của đồ thị hàm số các điểm (−2; −1); (−1; 0) và (0; 1).
Gọi phương trình đường tiệm cận xiên của đồ thị hàm số y = hx + k (h ≠ 0).
Ta có:
Vậy tiệm cận xiên của đồ thị hàm số có phương trình: y = x + 1.
c) Số nghiệm của phương trình f(x) = 3 là số giao điểm của đồ thị hàm số f(x) và đường thẳng y = 3. Căn cứ vào đồ thị hàm số, phương trình f(x) = 3 có hai nghiệm phân biệt.
d) Ta có: y = f(x) =
Với m = 1, f(x) = .
Đồ thị hàm số có tiệm cận đứng x = −2 nên n = 2.
Lúc này, ta có: f(x) = .
Thực hiện phép chia đa thức lấy tử (ax2 + bx + c) chia cho mẫu (x + 2) ta được thương là ax + b – 2a chính là phương trình đường tiệm cận xiên.
⇒ ax + b – 2a = x + 1 ⇒ hay .
⇒f(x) = .
Đồ thị hàm số đi qua điểm (−3; −3) nên ta có: = −3 ⇒ c = 3.
Vậy y = f(x) = .
Lời giải SBT Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số hay khác:
Bài 72 trang 36 SBT Toán 12 Tập 1: Đường cong ở Hình 16 là đồ thị của hàm số: ....
Bài 73 trang 36 SBT Toán 12 Tập 1: Đường cong ở Hình 17 là đồ thị của hàm số: ....
Bài 74 trang 36 SBT Toán 12 Tập 1: Đường cong ở Hình 18 là đồ thị của hàm số: ....
Bài 75 trang 36 SBT Toán 12 Tập 1: Cho hàm số y = với a > 0 có đồ thị là đường cong ở Hình 19 ....
Bài 77 trang 37 SBT Toán 12 Tập 1: Cho hàm số y = có đồ thị là đường cong ở Hình 21 ....
Bài 80 trang 38 SBT Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau: ....
Bài 81 trang 38 SBT Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau: ....
Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Cánh diều
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải SBT Toán 12 Cánh diều
- Giải lớp 12 Cánh diều (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều