Cho hàm số f(x) = 4sin^2(2x-pi/3). Chứng minh rằng |f'(x)| nhỏ hơn hoặc bằng 8

Bài 9.13 trang 60 SBT Toán 11 Tập 2: Cho hàm số f(x) = 4sin22x-π3. Chứng minh rằng |f'(x)| ≤ 8 với mọi x ℝ. Tìm x để f'(x) = 8.

Lời giải:

+ Có Cho hàm số f(x) = 4sin^2(2x-pi/3). Chứng minh rằng |f'(x)| nhỏ hơn hoặc bằng 8

Cho hàm số f(x) = 4sin^2(2x-pi/3). Chứng minh rằng |f'(x)| nhỏ hơn hoặc bằng 8

Cho hàm số f(x) = 4sin^2(2x-pi/3). Chứng minh rằng |f'(x)| nhỏ hơn hoặc bằng 8 với mọi x ℝ nên Cho hàm số f(x) = 4sin^2(2x-pi/3). Chứng minh rằng |f'(x)| nhỏ hơn hoặc bằng 8 với mọi x ℝ .

Vậy |f'(x)| ≤ 8 với mọi x ℝ.

+ Có f'(x) = 8 8sin4x2π3=8

sin4x2π3=1

4x2π3=π2+k2π (k ℤ)

4x=7π6+k2π (k ℤ)

x=7π24+kπ2 (k ℤ).

Vậy f'(x) = 8 khi x=7π24+kπ2 với k ℤ.

Lời giải SBT Toán 11 Bài 32: Các quy tắc tính đạo hàm hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác