Một dãy số un được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

Bài 2.50 trang 43 SBT Toán 11 Tập 1: Một dãy số (un) được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

u1 = a, un + 1 = qun + d.

Nếu q = 1 ta có cấp số cộng với công sai d, còn nếu d = 0 ta có cấp số nhân với công bội q.

a) Giả sử q ≠ 1. Dự đoán công thức số hạng tổng quát un.

b) Thiết lập công thức tính tổng Sn của n số hạng đầu của cấp số nhân cộng (un).

Lời giải:

a) Ta viết lần lượt các số hạng của dãy:

u1 = a;

u2 = qu1 + d;

u3 = qu2 + d = q(qu1 + d) + d = q2u1 + qd + d = q2u1+ d(q + 1);

u4 = qu3 + d = q(q2u1 + qd + d) + d = q3u1 + q2d + qd + d

= q3u1 + d(q2 + q + 1) = q3u1 + d1q31q     (với q ≠ 1).

Làm tương tự ta được công thức số hạng tổng quát un:

un = qn – 1u1 + d(qn – 2 + qn – 3 + ... + 1) = qn – 1u1 + d1qn11q.

b) Ta viết tổng n số hạng đầu như sau

Sn = u1 + u2 + ... + un

= u­1 + (qu1 + d) + (qu2 + d) + ... + (qun – 1 + d)

= u1 + q(u1 + u2 + ... + un – 1) + (n – 1)d

= u1 + qSn – 1 + (n – 1)d

= qSn – 1 + a + (n – 1)d               (vì u1 = a).

Như vậy, ta được (Sn) cũng là một cấp số nhân cộng với S1 = u1 = a.

Áp dụng công thức số hạng tổng quát vừa tìm được ở câu a để tính Sn ta có

 Một dãy số un được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

Vậy  Một dãy số un được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

Lời giải SBT Toán 11 Bài tập cuối chương 2 hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác