Chứng minh rằng nếu ba số theo thứ tự vừa lập thành một cấp số cộng vừa lập thành một cấp số nhân

Bài 2.48 trang 43 SBT Toán 11 Tập 1: Chứng minh rằng nếu ba số theo thứ tự vừa lập thành một cấp số cộng vừa lập thành một cấp số nhân thì ba số ấy bằng nhau.

Lời giải:

Gọi x, y lần lượt là số thứ nhất và số thứ ba trong ba số đó. 

Vì ba số theo thứ tự đó lập thành một cấp số cộng nên số thứ hai là x+y2

Khi đó, ba số cần tìm có dạng: x, x+y2, y.

Vì ba số này lập thành một cấp số nhân nên ta có

xy=x+y22⇔ 4xy = x2 + 2xy + y2 ⇔ x2 – 2xy + y2 = 0 ⇔ (x − y)2 = 0, tức là x = y.

Suy ra x+y2=x+x2=2x2=x.

Vậy ba số đó bằng nhau.

Lời giải SBT Toán 11 Bài tập cuối chương 2 hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác