Trong các dãy số un dưới đây dãy số nào là cấp số cộng dãy số nào là cấp số nhân?

Bài 2.43 trang 42 SBT Toán 11 Tập 1: Trong các dãy số (un) dưới đây, dãy số nào là cấp số cộng, dãy số nào là cấp số nhân? Nếu dãy số là cấp số cộng hoặc cấp số nhân, hãy xác định công sai hoặc công bội của nó.

a) u1 = 2, un + 1 = un + n;

b) un = 6n + 3;

c) u1 = 1, un + 1 = n ∙ un;

d) un = 3 . 5n.

Lời giải:

a) Từ hệ thức truy hồi ta có u1 = 2; u2 = u1 + 1 = 2 + 1 = 3; u3 = u2 + 2 = 3 + 2 = 5.

Ta có 3 – 2 = 1; 5 – 3 = 2 nên u2 – u1 ≠ u3 – u23253 nên u2u1u3u2.

Do vậy, dãy số đã cho không là cấp số cộng và cũng không là cấp số nhân.

b) Từ un = 6n + 3, suy ra un + 1 = 6(n + 1) + 3 = 6n + 9.

Ta có un + 1 = (6n + 9) – (6n + 3) = 6 không đổi với mọi n ≥ 1.

Vậy dãy số đã cho là cấp số cộng với công sai d = 6.

c) Từ hệ thức truy hồi ta có u1 = 1; u2 = 1; u3 = 2 . u2 = 2.

Từ đó suy ra u2 – u1 ≠ u3 – u2u2u1u3u2.

Vậy dãy số đã cho không là cấp số cộng và cũng không là cấp số nhân.

d) Từ un = 3 . 5n suy ra un + 1 = 3 . 5n + 1 = 3 . 5 . 5n.

Ta có un+1un=3.5.5n3.5n=5 không đổi với mọi n ≥ 1.

Vậy dãy số đã cho là cấp số nhân với công bội q = 5.

Lời giải SBT Toán 11 Bài tập cuối chương 2 hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác