Chứng minh rằng phương trình x^5 + 3x^2 ‒ 1 = 0 trong mỗi khoảng (‒2; ‒1), (‒1; 0)

Bài 11 trang 95 SBT Toán 11 Tập 1: Chứng minh rằng phương trình x5 + 3x2 ‒ 1 = 0 trong mỗi khoảng (‒2; ‒1), (‒1; 0) và (0; 1) đều có ít nhất một nghiệm.

Lời giải:

Xét hàm số f(x) = x5 + 3x2 ‒ 1. Hàm số này liên tục trên ℝ.

Ta có:

f(‒2) = (‒2)5 + 3.(‒2)2 ‒ 1 = ‒32 + 12 ‒ 1 = ‒21.

f(‒1) = (‒1)5 + 3.(‒1)2 ‒ 1 = ‒1 + 3 ‒ 1 = 1.

f(0) = 05 + 3.02 ‒ 1 = ‒1.

f(1) = 15 + 3.12 ‒ 1 = 3.

Do f(‒2).f(‒1) = ‒21 < 0 nên phương trình f(x) có nghiệm thuộc (‒2; ‒1).

Do f(‒1).f(0) = –1 < 0 nên phương trình f(x) = 0 có nghiệm thuộc (‒1; 0).

Do f(0).f(1) = ‒3 < 0 nên phương trình f(x) = 0 có nghiệm thuộc (0; 1).

Vậy trong mỗi khoảng (‒2; ‒1), (‒1; 0) và (0; 1) phương trình f(x) = 0 hay x5 + 3x2 ‒ 1 = 0 đều có ít nhất một nghiệm.

Lời giải Sách bài tập Toán lớp 11 Bài tập cuối chương 3 hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác