Giải các bất phương trình sau: a) 3x^2 – 36x + 108 > 0
Bài 6.22 trang 18 Sách bài tập Toán lớp 10 Tập 2: Giải các bất phương trình sau:
a) 3x2 – 36x + 108 > 0;
b) –x2 + 2x – 2 ≥ 0;
c) x4 – 3x2 + 2 ≤ 0;
d) .
Lời giải:
a)
Xét tam thức bậc hai f(x) = 3x2 – 36x + 108 có a = 3 > 0
Phương trình bậc hai 3x2 – 36x + 108 = 0 có ∆ = b2 – 4ac = (–36)2 – 4.3.108 = 0
Do đó, phương trình có nghiệm kép x = 6.
Do đó, f(x) = 3x2 – 36x + 108 > 0 với x ∈ ℝ\{6}
Hay tập nghiệm của bất phương trình 3x2 – 36x + 108 > 0 là S = ℝ\{6}.
b)
Xét tam thức bậc hai f(x) = –x2 + 2x – 2 có a = –1 < 0
Phương trình bậc hai –x2 + 2x – 2 = 0 có ∆ = b2 – 4ac = 22 – 4.(–1).(–2) = –4 < 0
Do đó, f(x) = –x2 + 2x – 2 < 0 với mọi x ∈ ℝ
Hay tập nghiệm của bất phương trình –x2 + 2x – 2 ≥ 0 là S = ∅.
c)
x4 – 3x2 + 2 ≤ 0
Đặt t = x2 (t ≥ 0), khi đó, bất phương trình trở thành:
t2 – 3t + 2 ≤ 0
Xét tam thức bậc hai f(t) = t2 – 3t + 2 có a = 1 > 0
Phương trình bậc hai t2 – 3t + 2 = 0 có ∆ = b2 – 4ac = (–3)2 – 4.1.2 = 1 > 0
Do đó, phương trình có hai nghiệm phân biệt là:
Do đó, f(t) = t2 – 3t + 2 < 0 với t ∈ (1; 2) ⇒ t2 – 3t + 2 ≤ 0 với t ∈ [1; 2] (thỏa mãn điều kiện t ≥ 0).
Ta có t ∈ [1; 2] ⇒ 1 ≤ t ≤ 2 ⇒ 1 ≤ x2 ≤ 2
Hay tập nghiệm của bất phương trình x4 – 3x2 + 2 ≤ 0 là S = [;-1][1;].
d)
Xét phương trình bậc hai x2 – x + 1 = 0 có a = 1 > 0 và ∆1 = (–1)2 – 4.1.1 = –3 < 0 do đó, x2 – x + 1 > 0 với mọi số thực x.
Xét phương trình bậc hai 2x2 + x + 2 = 0 có a = 2 > 0 và ∆2 = 12 – 4.2.2 = –15 < 0 do đó, 2x2 + x + 2 > 0 với mọi số thực x
Do đó, tập xác định của bất phương trình là D = ℝ.
Khi đó,
⇔ 2x2 + x + 2 ≤ x2 – x + 1
⇔ x2 + 2x + 1 ≤ 0
⇔ (x + 1)2 ≤ 0
Do (x + 1)2 ≥ 0 với mọi số thực x nên ta có:
(x + 1)2 ≤ 0
⇔ (x + 1)2 = 0
⇔ x + 1 = 0
⇔ x = –1
Vậy tập nghiệm của bất phương trình là S = {–1}.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT