Bài 4.31 trang 65 sách bài tập Toán lớp 10 Tập 1

Bài 4.31 trang 65 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC có A^<90°. Dựng ra phía ngoài tam giác hai tam giác vuông cân đỉnh A là ABD và ACE. Gọi M, N, P theo thứ tự là trung điểm BC, BD, CE. Chứng minh rằng:

a) AM vuông góc với DE;

b) BE vuông góc với CD;

c) Tam giác MNP là một tam giác vuông cân.

Lời giải:

Bài 4.31 trang 65 sách bài tập Toán lớp 10 Tập 1

a) +) Vì M là trung điểm của BC nên AB+AC=2AM

AM=12AB+AC

+) Theo quy tắc ba điểm ta có: DE=AEAD

AM.DE=12AB+ACAEAD

=12AB.AEAB.AD+AC.AEAC.AD

Mà AB AD nên AB.AD=0

Và AC AE nên AC.AE=0

Do đó AM.DE=12AB.AEAC.AD

Ta có:

AB.AE=AB.AE.cosBAE^

AC.AD=AC.AD.cosCAD^

• AB = AD (do ∆ABD vuông cân tại A)

Và AC = AE (do ∆ACE vuông cân tại A)

BAE^=BAC^+CAE^=BAC^+90°

CAD^=BAC^+BAD^=BAC^+90°

BAE^=CAD^

Do đó AB.AE=AC.AD

AM.DE=12AB.AEAB.AE=0

AMDE

b) Ta có: BE=AEABCD=ADAC

BE.CD=AEAB.ADAC

=AE.ADAE.ACAB.AD+AB.AC

=AE.AD+AB.AC (do AB.AD=0AC.AE=0 )

Ta có:

AE.AD=AE.AD.cosDAE^

AB.AC=AB.AC.cosBAC^

• AB = AD và AC = AE

DAE^=360°DAB^BAC^CAE^

DAE^=360°90°BAC^90°

DAE^=180°BAC^

cosDAE^=cos180°BAC^=cosBAC^

AE.AD=AB.AC

BE.CD=AE.ADAB.AC=0

BECD

BE CD.

c) Ta có: BE2=BE2=AEAB2

=AE22.AE.AB+AB2

=AE2+AB22.AE.AB.cosEAB^

=AD2+AC22.AD.AC.cosCAD^

=AD2+AC22AD.AC

=ADAC2

=CD2=CD2

BE = CD (1)

Xét tam giác BCD có M, N lần lượt là trung điểm của BC, BD

Nên MN là đường trung bình của ∆BCD

MN=12CD và MN // CD (2)

Chứng minh tương tự ta cũng có:

MP là đường trung bình của ∆BCE

MP=12BE và MP // BE (3)

Từ (1), (2) và (3) suy ra MN = MP.

BE CD (câu b), MN // CD và MP // BE

Nên MN MP

NMP^=90°

Tam giác MNP có MN = MP và NMP^=90°

Suy ra tam giác MNP là tam giác vuông cân tại M.

Xem thêm các bài giải sách bài tập Toán lớp 10 sách Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác