Với mỗi cặp mệnh đề P và Q sau đây, hãy phát biểu mệnh đề P ⇒ Q và xét tính đúng sai của nó

Bài 4 trang 8 SBT Toán 10 Tập 1: Với mỗi cặp mệnh đề P và Q sau đây, hãy phát biểu mệnh đề P ⇒ Q và xét tính đúng sai của nó.

a) P: “Hai tam giác ABC và DEF bằng nhau”;

Q: “Hai tam giác ABC và DEF đồng dạng”.

b) P: “b2 ≥ 4ac”;

Q: “Phương trình ax2 + bx + x = 0 vô nghiệm” (a, b, c là ba số thực nào đó, a ≠ 0).

Lời giải:

a) Mệnh đề P ⇒ Q: “Nếu hai tam giác ABC và DEF bằng nhau thì hai tam giác ABC và DEF đồng dạng”.

Mệnh đề này là mệnh đề đúng.

Do hai tam giác ABC và DEF bằng nhau thì AB = DE, BC = EF, AC = DF.

Suy ra ABDE=BCEF=ACDF=1.

Nên tam giác ABC đồng dạng với tam giác DEF theo trường hợp cạnh – cạnh – cạnh.

b) Mệnh đề P ⇒ Q: “Nếu b2 ≥ 4ac thì phương trình ax2 + bx + x = 0 vô nghiệm”.

Mệnh đề này là mệnh đề sai.

Vì b2 ≥ 4ac nên b2 – 4ac ≥ 0.

Khi đó: ∆ = b2 – 4ac ≥ 0 nên phương trình ax2 + bx + x = 0 có nghiệm.

Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác