Tìm tất cả các giá trị của tham số m để hàm số y = 1 / căn bậc hai (x^2 – 4x + 6m – 1) có tập xác định là ℝ

Bài 26 trang 52 SBT Toán 10 Tập 1: Tìm tất cả các giá trị của tham số m để hàm số y = 1x2-4x+6m-1 có tập xác định là ℝ.

Lời giải:

Điều kiện xác định của hàm số y = 1x2-4x+6m-1 là x2 – 4x + 6m – 1 > 0.

Để tập xác định là ℝ thì x2 – 4x + 6m – 1 > 0 với mọi x ∈ ℝ.

Xét f(x) = x2 – 4x + 6m – 1, có a = 1 > 0 và ∆ = (– 4)2 – 4.1.(6m – 1) = 20 – 24m.

Vì a > 0 nên để f(x) > 0 thì ∆ < 0 ⇔ 20 – 24m < 0 ⇔ – 24m < – 20 ⇔ m > 56.

Vậy với m > 56 thì hàm số y = 1x2-4x+6m-1 có tập xác định là ℝ.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác