Giải Toán 12 trang 17 Kết nối tri thức, Chân trời sáng tạo, Cánh diều



Trọn bộ lời giải bài tập Toán 12 trang 17 Kết nối tri thức, Chân trời sáng tạo, Cánh diều sẽ giúp học sinh lớp 12 dễ dàng làm bài tập Toán 12 trang 17. Bạn vào trang hoặc Xem lời giải để theo dõi chi tiết.

- Toán lớp 12 trang 17 Tập 1 (sách mới):

- Toán lớp 12 trang 17 Tập 2 (sách mới):




Lưu trữ: Giải Toán 12 trang 17 (sách cũ)

Bài 12 (trang 17 sgk Giải Tích 12 nâng cao): Tìm cực trị của hàm số sau:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Lời giải:

a) Tập xác định: [-2; 2]

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Bảng biến thiên:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Hàm số đạt cực tiểu tại x=-√2,yCT=y(-√2 )=-2

Hàm số đạt cực đại tại x = √2,y=y(√2)=2

b) Tập xác định: [-2√2;2√2]

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Bảng biến thiên:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Hàm số cực đại tại x = 0; y=y(0)=2√2

Hàm số không có cực tiểu.

c) Tập xác định: R

y'=(x-sin⁡2x+2)'=1-2 cos⁡2x

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Vậy hàm số cực đại tại điểm

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Hàm số đạt cực tiểu tại tiểu

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

d) Tập xác định: R

y'= 2 sin⁡x+2.sin⁡2x=2 sin⁡x(1+2 cos⁡x )

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

=> y'' (k π)>0 (có thể viết: y'' (k π)=4+2 cos⁡(k π)

Nên hàm số đạt cực tiểu tại các điểm

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

nên hàm số đạt cực đại tại các điểm.

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Các bài giải bài tập Giải Tích 12 nâng cao Bài 2 Chương 1 khác:


cuc-tri-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học