Bài II.3 trang 154 SBT Toán 7 Tập 1



Ôn tập chương 2

Bài II.3 trang 154 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Trên Tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD

a) Chứng minh rằng IB = IC, ID = IE.

b) Chứng minh rằng BC song song DE.

c) Gọi M là trung điểm BC. Chứng minh rằng ba điểm A, M, I thẳng hàng.

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

a) +)Theo giả thiết ta có: AB = AC và BD = CE nên:

AB + BD = AC + CE hay AD = AE.

+) Xét ΔABE và ΔACD có:

AB = AC (gt)

∠A chung

AE = AD (chứng minh trên)

⇒ ΔABE = ΔACD (c.g.c)

⇒ BE = CD (2 cạnh tương ứng) (1)

và ∠ABE = ∠ACD (2 góc tương ứng) (2)

Tam giác ABC cân nên ∠B1 = ∠C1. (3)

Từ (2) và (3) ⇒ ∠ABE - ∠B1 = ∠ACD - ∠C1, tức là ∠B2 = ∠C2.

⇒ ΔBIC cân tại I ⇒ IB = IC. (4)

Từ (1) và (4) suy ra BE - IB = CD – IC, tức là IE = ID.

b) Các tam giác cân ABC và ADC có chung góc ở đỉnh ∠A nên ∠B1 = ∠ADE. Mà hai góc này ở vị trí đồng vị nên suy ra BC // DE.

c) Xét ΔABM và ΔACM có:

AB = AC ( giả thiết)

BM = CM ( vì M là trung điểm BC )

AM chung

⇒ ΔABM = ΔACM (c.c.c)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180o

⇒ ∠AMB = ∠AMC = 90o hay AM ⊥ BC

Chứng minh tương tự ta có: IM ⊥ BC

⇒ A, I, M thẳng hàng (Qua 1 điểm ta kẻ được duy nhất 1 đường thẳng vuông góc với đường thẳng cho trước)

Các bài giải bài tập sách bài tập Toán 7 (SBT Toán 7) Bài Ôn Tập Chương 2 Hình Học khác:

Lời giải bài tập lớp 7 sách mới:




Giải bài tập lớp 7 sách mới các môn học