Bài 1.67 trang 38 Sách bài tập Giải tích 12



Bài 1.67 trang 38 Sách bài tập Giải tích 12: Cho hàm số:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

a) Xét tính đơn điệu của hàm số.

b) Chứng minh rằng với mọi m, tiệm cận ngang của đồ thị (Cm) của hàm số đã cho luôn đi qua điểm Giải sách bài tập Toán 12 | Giải SBT Toán 12

c) Biện luận theo m số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất.

d) Vẽ đồ thị của hàm số: Giải sách bài tập Toán 12 | Giải SBT Toán 12

Lời giải:

Xét hàm số:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

a) TXĐ: R \ {−3m/2}

Giải sách bài tập Toán 12 | Giải SBT Toán 12

    +) Nếu m < −8/3, y′ > 0 suy ra hàm số đồng biến trên các khoảngGiải sách bài tập Toán 12 | Giải SBT Toán 12

    +) Nếu m > −8/3, y′ < 0 suy ra hàm số nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải SBT Toán 12

    +) Nếu m = −8/3 thì y = −1/2 khi x ≠ 4

b) Ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

nên với mọi m, đường thẳng y = -1/2 là tiệm cận ngang và đi qua Giải sách bài tập Toán 12 | Giải SBT Toán 12

c) Số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất là số nghiệm của phương trình:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

⇔ 2x2 + (3m + 1)x – 4 = 0 ⇔ 2x2 + (3m + 1) x – 4 = 0 với x ≠ −3m/2

    +) Thay x = −3m/2 vào (*), ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Như vậy, để x = −3m/2 không là nghiệm của phương trình (*) ta phải có m ≠ −8/3.

Ta có: Δ = (3m + 1)2 + 32 > 0, ∀ m. Từ đó suy ra với m ≠−8/3 đường thẳng y = x luôn cắt (Cm) tại hai điểm phân biệt.

d) Ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Trước hết, ta vẽ đồ thị (C) của hàm số

Giải sách bài tập Toán 12 | Giải SBT Toán 12

TXĐ: D = R \ {−3/2}.

Giải sách bài tập Toán 12 | Giải SBT Toán 12

với mọi nên hàm số nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Tiệm cận đứng x = −3/2

Tiệm cận ngang y = −1/2

Đồ thị (C) đi qua các điểm (−2;−6),(−1;5),(0;4/3),(4;0)

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Để vẽ đồ thị (C’) của hàm số , ta giữ nguyên phần đồ thị (C) nằm phía trên trục hoành và lấy đối xứng phần đồ thị (C) nằm phía dưới trục hoành qua trục hoành.

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Các bài giải sách bài tập Giải tích 12 khác:


bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học