Bài 1.64 trang 37 Sách bài tập Giải tích 12



Bài 1.64 trang 37 Sách bài tập Giải tích 12: Cho hàm số y = 2x4 − 4x2 (1)

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).

b) Với giá trị nào của m, phương trình x2|x2 − 2| = m có đúng 6 nghiệm thực phân biệt?

(Đề thi đại học năm 2009; khối B)

Lời giải:

a) Tập xác định: D = R

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải SBT Toán 12

Hàm số đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)

Hàm số nghịch biến trên mỗi khoảng (−∞; −1); (0; 1)

Hàm số đạt cực đại tại x = 0; y = 0

Hàm số đạt cực tiểu tại x = 1 hoặc x = -1; yCT = −2

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Đồ thị có hai điểm uốn:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Đồ thị cắt trục hoành tại:

b) Ta có: x2|x2 − 2| = m

⇔ 2x2 |x2 − 2| = 2m

⇔|2x2(x2 − 2)| = 2m

⇔|2x4 − 4x2| = 2m

Từ đồ thị hàm số y = 2x4 – 4x2 có thể suy ra đồ thị của hàm số y = |2x4 − 4x2| như sau:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Phương trình: |2x4 − 4x2| = 2m có 6 nghiệm phân biệt khi và chỉ khi đường thẳng y = 2m có 6 nghiệm phân biệt với đồ thị (H)

⇔ 0 < 2m < 2

⇔ 0 < m < 1

Các bài giải sách bài tập Giải tích 12 khác:


bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học