Bài 1.62 trang 37 Sách bài tập Giải tích 12



Bài 1.62 trang 37 Sách bài tập Giải tích 12: Biện luận theo k số nghiệm của phương trình:

a) (x − 1)2 = 2|x − k|

b) (x + 1)2.(2 − x) = k

Lời giải:

a) Phương trình đã cho tương đương với phương trình:

2(x − k) = (x − 1)2 hoặc 2(x − k) = -(x − 1)2

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Ta vẽ đồ thị của hai hàm số: y = −x2 + 4x – 1 và y = x2 + 1

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Từ đồ thị ta suy ra:

    • 2k > 3 : phương trình có hai nghiệm;

    • 2k = 3 : phương trình có ba nghiệm;

    • 2 < 2k < 3 : phương trình có bốn nghiệm;

    • 2k = 2 : phương trình có ba nghiệm;

    • 1 < 2k < 2 : phương trình có bốn nghiệm ;

    • 2k = 1 : phương trình có ba nghiệm ;

    • 2k < 1 : phương trình có hai nghiệm.

Giải sách bài tập Toán 12 | Giải SBT Toán 12

(1) : phương trình có bốn nghiệm;

(2): phương trình có ba nghiệm ;

(3): phương trình có hai nghiệm.

b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = (x + 1)2.(2 − x).

y = −x3 + 3x + 2 ⇒ y′ = −3x2 + 3

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải SBT Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Từ đồ thị hàm số ta suy ra:

    • k > 4 hoặc k < 0: phương trình có một nghiệm;

    • k = 4 hoặc k = 0 : phương trình có hai nghiệm;

    • 0 < k < 4: phương trình có ba nghiệm.

Các bài giải sách bài tập Giải tích 12 khác:


bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học