Bài 3.52 trang 153 SBT Hình học 11



Bài 3.52 trang 153 Sách bài tập Hình học 11: Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc và các cạnh OA = OB = OC = a, gọi I là trung điểm BC.

a) Chứng minh rằng: BC ⊥ (AOI), (OAI) ⊥ (ABC).

b) Tính góc giữa AB và mặt phẳng (AOI).

c) Tính góc giữa các đường thẳng AI và OB.

Lời giải:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (BC ⊥ OA & BC ⊥ OI ⇒ BC ⊥ (OAI)

⇒ (ABC) ⊥ (OAI).

b) + Xác định góc α giữa AB và mặt phẳng (AOI)

(A ∈ (OAI) & BI ⊥ (OAI) ⇒ ∠[(AB,(OAI))] = ∠(BAI) = α.

+ Tính α:

Trong tam giác vuông BAI, ta có: sinα = 1/2 ⇒ α = 30o.

c) Xác định góc β giữa hai đường thẳng AI và OB:

Gọi J là trung điểm OC, ta có: IJ // OB và IJ ⊥ (AOC). Như vậy:

∠[(AB,OB)] = ∠[(AI,IJ)] = ∠(AIJ) = β.

+ Tính góc:

Trong tam giác IJA, ta có: tan β = AJ/IJ = √5 ⇒ β = arctan√5.

Các bài giải sách bài tập Hình học 11 khác:


de-toan-tong-hop-chuong-3.jsp


Giải bài tập lớp 11 sách mới các môn học