Bài 3.49 trang 153 SBT Hình học 11



Bài 3.49 trang 153 Sách bài tập Hình học 11: Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC.

a) Chứng minh AC ⊥ SD

b) Chứng minh MN ⊥ (SBD)

c) Cho AB = SA = a. Tính coossin của góc giữa (SBC) và (ABCD)

Lời giải:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (AC ⊥ SH & AC ⊥ BD ⇒ AC ⊥ (SBD) ⇒ AC ⊥ SD.

b) (MN//AC & AC ⊥ (SBD) ⇒ MN ⊥ (SBD).

c) + Xác định góc α giữa (SBC) và (ABCD)

Gọi I là trung điểm của BC, ta có:

(BC ⊥ IH & BC ⊥ SH ⇒ BC ⊥ (SIH)

⇒ BC ⊥ SI.

⇒ [((SBC),(ABCD)) ] = ∠(SIH) = α.

+ Tính α:

Trong tam giác SIH, ta có: cosα = IH/IS = √3/3 ⇒ α = arccos√3/3.

Các bài giải sách bài tập Hình học 11 khác:


de-toan-tong-hop-chuong-3.jsp


Giải bài tập lớp 11 sách mới các môn học