Bài 2.20 trang 71 SBT Hình học 11



Bài 2.20 trang 71 Sách bài tập Hình học 11: Cho tứ diện ABCD. Qua điểm M nằm trên AC ta dựng một mặt phẳng (α) song song với AB và CD. Mặt phẳng này lần lượt cắt các cạnh BC, BD và AD tại N, P và Q.

a) Tứ giác MNPQ là hình gì?

b) Gọi O là giao điểm hai đường chéo của tứ giác MNPQ. Tìm tập hợp các điểm O khi M di động trên đoạn AC.

Lời giải:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (α) ∩ (ABC) = MN và MN // AB

Ta có N ∈ (BCD) và Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên ⇒ (α) ∩ (BCD) = NP và NP // CD

Ta có P ∈ (ABD)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên ⇒ (α) ∩ (ABD) = PQ và PQ // AB

Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên ⇒ (α) ∩ (ACD) = MQ và MQ // CD

Do đó MN // PQ và NP // MQ, Vậy tứ giác MNPQ là hình bình hành.

b) Ta có: MP ∩ NQ = O. Gọi I là trung điểm của CD.

Trong tam giác ACD có : MQ // CD ⇒ AI cắt MQ tại trung điểm E của MQ.

Trong tam giác ACD có : NP // CD ⇒ BI cắt NP tại trung điểm F của NP.

Vì MNPQ là hình bình hành nên ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

EF // MN ⇒ EF // AB

Trong ΔABI ta có EF // AB suy ra : IO cắt AB tại trung điểm J

⇒ I, O, J thẳng hàng

⇒ O ∈ IJ cố định.

Vì M di động trên đoạn AC nên Ochạy trong đoạn IJ . Vậy tập hợp các điểm O là đoạn IJ.

Các bài giải sách bài tập Hình học 11 khác:


bai-3-duong-thang-va-mat-phang-song-song.jsp


Giải bài tập lớp 11 sách mới các môn học