Xác định a và b để đồ thị của hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp



Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Luyện tập trang 19-20 sgk Toán lớp 9 Tập 2

Video Bài 26 trang 19 SGK Toán 9 Tập 2 - Cô Ngô Hoàng Ngọc Hà (Giáo viên VietJack)

Bài 26 trang 19 SGK Toán lớp 9 Tập 2: Xác định a và b để đồ thị của hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau:

a) A(2; -2) và B(-1; 3) ;     b) A(-4; -2) và B(2; 1)

c) A(3; -1) và B(-3; 2) ;     d) A(√3; 2) và B(0; 2)

Lời giải

a) Đồ thị hàm số y = ax + b đi qua A(2; -2) ⇔ 2.a + b = -2 (1)

Đồ thị hàm số y = ax + b đi qua B(-1 ; 3) ⇔ a.(-1) + b = 3 (2)

Từ (1) và (2) ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Đồ thị hàm số y = ax + b đi qua A(-4; -2) ⇔ a.(-4) + b = -2

Đồ thị hàm số y = ax + b đi qua B(2 ; 1) ⇔ a.2 + b = 1

Ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Đồ thị hàm số y = ax + b đi qua A(3 ; -1) ⇔ a.3 + b = -1

Đồ thị hàm số y = ax + b đi qua B(-3 ; 2) ⇔ a.(-3) + b = 2.

Ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Đồ thị hàm số y = ax + b đi qua A(√3 ; 2) ⇔ a.√3 + b = 2 (*)

Đồ thị hàm số y = ax + b đi qua B(0; 2) ⇔ a.0 + b = 2 ⇔ b = 2.

Thay b = 2 vào (*) ta được a.√3 + 2 = 2 ⇔ a.√3 = 0 ⇔ a = 0.

Vậy a = 0 và b = 2.

Kiến thức áp dụng

+ Đồ thị hàm số y = f(x) đi qua điểm A(x0; y0) ⇔ y0 = f(x0).

+ Giải hệ phương trình bằng phương pháp cộng đại số

   1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

   2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

   3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.

Xem thêm các bài giải bài tập Toán lớp 9 Bài 4 khác:


bai-4-giai-he-phuong-trinh-bang-phuong-phap-cong-dai-so.jsp


Giải bài tập lớp 9 sách mới các môn học