Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B



Bài tập ôn cuối năm (Phần Đại Số - Phần Hình Học)

B - Phần Hình Học

Bài 3 trang 131 SGK Toán 8 Tập 2: Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Tam giác ABC phải có điều kiện gì thì tứ giác BHCK là:

a) Hình thoi? ;     b) Hình chữ nhật?

Lời giải:

Giải bài 3 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

Ta có: CE ⊥ AB (gt)

KB ⊥ AB (gt)

⇒ BK // CE (1)

Tương tự BH // KC (2)

Từ (1) và (2) ⇒ BHCK là hình bình hành.

Gọi M là giao điểm của hai đường chéo BC và HK.

a) Tam giác ABC có hai đường cao BD và CE cắt nhau tại H nên H là trực tâm tam giác ABC

⇒ AH ⊥ BC. (3)

BHCK là hình thoi

⇔ HM ⊥ BC ( trong đó M là giao điểm của hai đường chéo HK và BC) (4)

Từ (3) và (4) suy ra: A, H, M thẳng hàng.

Khi đó,tam giác ABC có AM là đường cao đồng thời là đường trung tuyến nên tam giác ABC là cân tại A.

b) BHCK là hình chữ nhật

Giải bài 3 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy BHCK là hình chữ nhật khi tam giác ABC vuông tại A.

Tham khảo các bài giải bài tập Giải bài tập Toán lớp 8 Bài tập ôn cuối năm Phần Hình Học khác:


bai-tap-on-cuoi-nam.jsp


Giải bài tập lớp 8 sách mới các môn học